Evaluate
\frac{1177}{98}\approx 12.010204082
Factor
\frac{11 \cdot 107}{2 \cdot 7 ^ {2}} = 12\frac{1}{98} = 12.010204081632653
Share
Copied to clipboard
\begin{array}{l}\phantom{196)}\phantom{1}\\196\overline{)2354}\\\end{array}
Use the 1^{st} digit 2 from dividend 2354
\begin{array}{l}\phantom{196)}0\phantom{2}\\196\overline{)2354}\\\end{array}
Since 2 is less than 196, use the next digit 3 from dividend 2354 and add 0 to the quotient
\begin{array}{l}\phantom{196)}0\phantom{3}\\196\overline{)2354}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2354
\begin{array}{l}\phantom{196)}00\phantom{4}\\196\overline{)2354}\\\end{array}
Since 23 is less than 196, use the next digit 5 from dividend 2354 and add 0 to the quotient
\begin{array}{l}\phantom{196)}00\phantom{5}\\196\overline{)2354}\\\end{array}
Use the 3^{rd} digit 5 from dividend 2354
\begin{array}{l}\phantom{196)}001\phantom{6}\\196\overline{)2354}\\\phantom{196)}\underline{\phantom{}196\phantom{9}}\\\phantom{196)9}39\\\end{array}
Find closest multiple of 196 to 235. We see that 1 \times 196 = 196 is the nearest. Now subtract 196 from 235 to get reminder 39. Add 1 to quotient.
\begin{array}{l}\phantom{196)}001\phantom{7}\\196\overline{)2354}\\\phantom{196)}\underline{\phantom{}196\phantom{9}}\\\phantom{196)9}394\\\end{array}
Use the 4^{th} digit 4 from dividend 2354
\begin{array}{l}\phantom{196)}0012\phantom{8}\\196\overline{)2354}\\\phantom{196)}\underline{\phantom{}196\phantom{9}}\\\phantom{196)9}394\\\phantom{196)}\underline{\phantom{9}392\phantom{}}\\\phantom{196)999}2\\\end{array}
Find closest multiple of 196 to 394. We see that 2 \times 196 = 392 is the nearest. Now subtract 392 from 394 to get reminder 2. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }2
Since 2 is less than 196, stop the division. The reminder is 2. The topmost line 0012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}