Solve for x
x=\frac{\sqrt{11551}-6}{235}\approx 0.431810973
x=\frac{-\sqrt{11551}-6}{235}\approx -0.482874803
Graph
Share
Copied to clipboard
235x^{2}+12x-49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 235\left(-49\right)}}{2\times 235}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 235 for a, 12 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 235\left(-49\right)}}{2\times 235}
Square 12.
x=\frac{-12±\sqrt{144-940\left(-49\right)}}{2\times 235}
Multiply -4 times 235.
x=\frac{-12±\sqrt{144+46060}}{2\times 235}
Multiply -940 times -49.
x=\frac{-12±\sqrt{46204}}{2\times 235}
Add 144 to 46060.
x=\frac{-12±2\sqrt{11551}}{2\times 235}
Take the square root of 46204.
x=\frac{-12±2\sqrt{11551}}{470}
Multiply 2 times 235.
x=\frac{2\sqrt{11551}-12}{470}
Now solve the equation x=\frac{-12±2\sqrt{11551}}{470} when ± is plus. Add -12 to 2\sqrt{11551}.
x=\frac{\sqrt{11551}-6}{235}
Divide -12+2\sqrt{11551} by 470.
x=\frac{-2\sqrt{11551}-12}{470}
Now solve the equation x=\frac{-12±2\sqrt{11551}}{470} when ± is minus. Subtract 2\sqrt{11551} from -12.
x=\frac{-\sqrt{11551}-6}{235}
Divide -12-2\sqrt{11551} by 470.
x=\frac{\sqrt{11551}-6}{235} x=\frac{-\sqrt{11551}-6}{235}
The equation is now solved.
235x^{2}+12x-49=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
235x^{2}+12x-49-\left(-49\right)=-\left(-49\right)
Add 49 to both sides of the equation.
235x^{2}+12x=-\left(-49\right)
Subtracting -49 from itself leaves 0.
235x^{2}+12x=49
Subtract -49 from 0.
\frac{235x^{2}+12x}{235}=\frac{49}{235}
Divide both sides by 235.
x^{2}+\frac{12}{235}x=\frac{49}{235}
Dividing by 235 undoes the multiplication by 235.
x^{2}+\frac{12}{235}x+\left(\frac{6}{235}\right)^{2}=\frac{49}{235}+\left(\frac{6}{235}\right)^{2}
Divide \frac{12}{235}, the coefficient of the x term, by 2 to get \frac{6}{235}. Then add the square of \frac{6}{235} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{235}x+\frac{36}{55225}=\frac{49}{235}+\frac{36}{55225}
Square \frac{6}{235} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{235}x+\frac{36}{55225}=\frac{11551}{55225}
Add \frac{49}{235} to \frac{36}{55225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{235}\right)^{2}=\frac{11551}{55225}
Factor x^{2}+\frac{12}{235}x+\frac{36}{55225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{235}\right)^{2}}=\sqrt{\frac{11551}{55225}}
Take the square root of both sides of the equation.
x+\frac{6}{235}=\frac{\sqrt{11551}}{235} x+\frac{6}{235}=-\frac{\sqrt{11551}}{235}
Simplify.
x=\frac{\sqrt{11551}-6}{235} x=\frac{-\sqrt{11551}-6}{235}
Subtract \frac{6}{235} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}