Evaluate
1
Factor
1
Share
Copied to clipboard
\begin{array}{l}\phantom{2300)}\phantom{1}\\2300\overline{)2300}\\\end{array}
Use the 1^{st} digit 2 from dividend 2300
\begin{array}{l}\phantom{2300)}0\phantom{2}\\2300\overline{)2300}\\\end{array}
Since 2 is less than 2300, use the next digit 3 from dividend 2300 and add 0 to the quotient
\begin{array}{l}\phantom{2300)}0\phantom{3}\\2300\overline{)2300}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2300
\begin{array}{l}\phantom{2300)}00\phantom{4}\\2300\overline{)2300}\\\end{array}
Since 23 is less than 2300, use the next digit 0 from dividend 2300 and add 0 to the quotient
\begin{array}{l}\phantom{2300)}00\phantom{5}\\2300\overline{)2300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2300
\begin{array}{l}\phantom{2300)}000\phantom{6}\\2300\overline{)2300}\\\end{array}
Since 230 is less than 2300, use the next digit 0 from dividend 2300 and add 0 to the quotient
\begin{array}{l}\phantom{2300)}000\phantom{7}\\2300\overline{)2300}\\\end{array}
Use the 4^{th} digit 0 from dividend 2300
\begin{array}{l}\phantom{2300)}0001\phantom{8}\\2300\overline{)2300}\\\phantom{2300)}\underline{\phantom{}2300\phantom{}}\\\phantom{2300)9999}0\\\end{array}
Find closest multiple of 2300 to 2300. We see that 1 \times 2300 = 2300 is the nearest. Now subtract 2300 from 2300 to get reminder 0. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }0
Since 0 is less than 2300, stop the division. The reminder is 0. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}