Solve for m
m = \frac{4 \sqrt{6} + 25}{23} \approx 1.512954738
m=\frac{25-4\sqrt{6}}{23}\approx 0.660958306
Share
Copied to clipboard
23m^{2}-50m+23=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 23\times 23}}{2\times 23}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 23 for a, -50 for b, and 23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-50\right)±\sqrt{2500-4\times 23\times 23}}{2\times 23}
Square -50.
m=\frac{-\left(-50\right)±\sqrt{2500-92\times 23}}{2\times 23}
Multiply -4 times 23.
m=\frac{-\left(-50\right)±\sqrt{2500-2116}}{2\times 23}
Multiply -92 times 23.
m=\frac{-\left(-50\right)±\sqrt{384}}{2\times 23}
Add 2500 to -2116.
m=\frac{-\left(-50\right)±8\sqrt{6}}{2\times 23}
Take the square root of 384.
m=\frac{50±8\sqrt{6}}{2\times 23}
The opposite of -50 is 50.
m=\frac{50±8\sqrt{6}}{46}
Multiply 2 times 23.
m=\frac{8\sqrt{6}+50}{46}
Now solve the equation m=\frac{50±8\sqrt{6}}{46} when ± is plus. Add 50 to 8\sqrt{6}.
m=\frac{4\sqrt{6}+25}{23}
Divide 50+8\sqrt{6} by 46.
m=\frac{50-8\sqrt{6}}{46}
Now solve the equation m=\frac{50±8\sqrt{6}}{46} when ± is minus. Subtract 8\sqrt{6} from 50.
m=\frac{25-4\sqrt{6}}{23}
Divide 50-8\sqrt{6} by 46.
m=\frac{4\sqrt{6}+25}{23} m=\frac{25-4\sqrt{6}}{23}
The equation is now solved.
23m^{2}-50m+23=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
23m^{2}-50m+23-23=-23
Subtract 23 from both sides of the equation.
23m^{2}-50m=-23
Subtracting 23 from itself leaves 0.
\frac{23m^{2}-50m}{23}=-\frac{23}{23}
Divide both sides by 23.
m^{2}-\frac{50}{23}m=-\frac{23}{23}
Dividing by 23 undoes the multiplication by 23.
m^{2}-\frac{50}{23}m=-1
Divide -23 by 23.
m^{2}-\frac{50}{23}m+\left(-\frac{25}{23}\right)^{2}=-1+\left(-\frac{25}{23}\right)^{2}
Divide -\frac{50}{23}, the coefficient of the x term, by 2 to get -\frac{25}{23}. Then add the square of -\frac{25}{23} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{50}{23}m+\frac{625}{529}=-1+\frac{625}{529}
Square -\frac{25}{23} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{50}{23}m+\frac{625}{529}=\frac{96}{529}
Add -1 to \frac{625}{529}.
\left(m-\frac{25}{23}\right)^{2}=\frac{96}{529}
Factor m^{2}-\frac{50}{23}m+\frac{625}{529}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{25}{23}\right)^{2}}=\sqrt{\frac{96}{529}}
Take the square root of both sides of the equation.
m-\frac{25}{23}=\frac{4\sqrt{6}}{23} m-\frac{25}{23}=-\frac{4\sqrt{6}}{23}
Simplify.
m=\frac{4\sqrt{6}+25}{23} m=\frac{25-4\sqrt{6}}{23}
Add \frac{25}{23} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}