Solve for x (complex solution)
x=\frac{-3+\sqrt{37}i}{23}\approx -0.130434783+0.264467936i
x=\frac{-\sqrt{37}i-3}{23}\approx -0.130434783-0.264467936i
Graph
Share
Copied to clipboard
23x^{2}+6x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 23\times 2}}{2\times 23}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 23 for a, 6 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 23\times 2}}{2\times 23}
Square 6.
x=\frac{-6±\sqrt{36-92\times 2}}{2\times 23}
Multiply -4 times 23.
x=\frac{-6±\sqrt{36-184}}{2\times 23}
Multiply -92 times 2.
x=\frac{-6±\sqrt{-148}}{2\times 23}
Add 36 to -184.
x=\frac{-6±2\sqrt{37}i}{2\times 23}
Take the square root of -148.
x=\frac{-6±2\sqrt{37}i}{46}
Multiply 2 times 23.
x=\frac{-6+2\sqrt{37}i}{46}
Now solve the equation x=\frac{-6±2\sqrt{37}i}{46} when ± is plus. Add -6 to 2i\sqrt{37}.
x=\frac{-3+\sqrt{37}i}{23}
Divide -6+2i\sqrt{37} by 46.
x=\frac{-2\sqrt{37}i-6}{46}
Now solve the equation x=\frac{-6±2\sqrt{37}i}{46} when ± is minus. Subtract 2i\sqrt{37} from -6.
x=\frac{-\sqrt{37}i-3}{23}
Divide -6-2i\sqrt{37} by 46.
x=\frac{-3+\sqrt{37}i}{23} x=\frac{-\sqrt{37}i-3}{23}
The equation is now solved.
23x^{2}+6x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
23x^{2}+6x+2-2=-2
Subtract 2 from both sides of the equation.
23x^{2}+6x=-2
Subtracting 2 from itself leaves 0.
\frac{23x^{2}+6x}{23}=-\frac{2}{23}
Divide both sides by 23.
x^{2}+\frac{6}{23}x=-\frac{2}{23}
Dividing by 23 undoes the multiplication by 23.
x^{2}+\frac{6}{23}x+\left(\frac{3}{23}\right)^{2}=-\frac{2}{23}+\left(\frac{3}{23}\right)^{2}
Divide \frac{6}{23}, the coefficient of the x term, by 2 to get \frac{3}{23}. Then add the square of \frac{3}{23} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{23}x+\frac{9}{529}=-\frac{2}{23}+\frac{9}{529}
Square \frac{3}{23} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{23}x+\frac{9}{529}=-\frac{37}{529}
Add -\frac{2}{23} to \frac{9}{529} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{23}\right)^{2}=-\frac{37}{529}
Factor x^{2}+\frac{6}{23}x+\frac{9}{529}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{23}\right)^{2}}=\sqrt{-\frac{37}{529}}
Take the square root of both sides of the equation.
x+\frac{3}{23}=\frac{\sqrt{37}i}{23} x+\frac{3}{23}=-\frac{\sqrt{37}i}{23}
Simplify.
x=\frac{-3+\sqrt{37}i}{23} x=\frac{-\sqrt{37}i-3}{23}
Subtract \frac{3}{23} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}