Evaluate
\frac{242}{15}\approx 16.133333333
Factor
\frac{2 \cdot 11 ^ {2}}{3 \cdot 5} = 16\frac{2}{15} = 16.133333333333333
Share
Copied to clipboard
\frac{\left(23\times 21+1\right)\times 7}{21\left(1\times 7+3\right)}
Divide \frac{23\times 21+1}{21} by \frac{1\times 7+3}{7} by multiplying \frac{23\times 21+1}{21} by the reciprocal of \frac{1\times 7+3}{7}.
\frac{1+21\times 23}{3\left(3+7\right)}
Cancel out 7 in both numerator and denominator.
\frac{1+483}{3\left(3+7\right)}
Multiply 21 and 23 to get 483.
\frac{484}{3\left(3+7\right)}
Add 1 and 483 to get 484.
\frac{484}{3\times 10}
Add 3 and 7 to get 10.
\frac{484}{30}
Multiply 3 and 10 to get 30.
\frac{242}{15}
Reduce the fraction \frac{484}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}