Evaluate
\frac{574464}{25}=22978.56
Factor
\frac{2 ^ {10} \cdot 3 \cdot 11 \cdot 17}{5 ^ {2}} = 22978\frac{14}{25} = 22978.56
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)2297856}\\\end{array}
Use the 1^{st} digit 2 from dividend 2297856
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)2297856}\\\end{array}
Since 2 is less than 100, use the next digit 2 from dividend 2297856 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)2297856}\\\end{array}
Use the 2^{nd} digit 2 from dividend 2297856
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)2297856}\\\end{array}
Since 22 is less than 100, use the next digit 9 from dividend 2297856 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)2297856}\\\end{array}
Use the 3^{rd} digit 9 from dividend 2297856
\begin{array}{l}\phantom{100)}002\phantom{6}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}29\\\end{array}
Find closest multiple of 100 to 229. We see that 2 \times 100 = 200 is the nearest. Now subtract 200 from 229 to get reminder 29. Add 2 to quotient.
\begin{array}{l}\phantom{100)}002\phantom{7}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\end{array}
Use the 4^{th} digit 7 from dividend 2297856
\begin{array}{l}\phantom{100)}0022\phantom{8}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\phantom{100)}\underline{\phantom{9}200\phantom{999}}\\\phantom{100)99}97\\\end{array}
Find closest multiple of 100 to 297. We see that 2 \times 100 = 200 is the nearest. Now subtract 200 from 297 to get reminder 97. Add 2 to quotient.
\begin{array}{l}\phantom{100)}0022\phantom{9}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\phantom{100)}\underline{\phantom{9}200\phantom{999}}\\\phantom{100)99}978\\\end{array}
Use the 5^{th} digit 8 from dividend 2297856
\begin{array}{l}\phantom{100)}00229\phantom{10}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\phantom{100)}\underline{\phantom{9}200\phantom{999}}\\\phantom{100)99}978\\\phantom{100)}\underline{\phantom{99}900\phantom{99}}\\\phantom{100)999}78\\\end{array}
Find closest multiple of 100 to 978. We see that 9 \times 100 = 900 is the nearest. Now subtract 900 from 978 to get reminder 78. Add 9 to quotient.
\begin{array}{l}\phantom{100)}00229\phantom{11}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\phantom{100)}\underline{\phantom{9}200\phantom{999}}\\\phantom{100)99}978\\\phantom{100)}\underline{\phantom{99}900\phantom{99}}\\\phantom{100)999}785\\\end{array}
Use the 6^{th} digit 5 from dividend 2297856
\begin{array}{l}\phantom{100)}002297\phantom{12}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\phantom{100)}\underline{\phantom{9}200\phantom{999}}\\\phantom{100)99}978\\\phantom{100)}\underline{\phantom{99}900\phantom{99}}\\\phantom{100)999}785\\\phantom{100)}\underline{\phantom{999}700\phantom{9}}\\\phantom{100)9999}85\\\end{array}
Find closest multiple of 100 to 785. We see that 7 \times 100 = 700 is the nearest. Now subtract 700 from 785 to get reminder 85. Add 7 to quotient.
\begin{array}{l}\phantom{100)}002297\phantom{13}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\phantom{100)}\underline{\phantom{9}200\phantom{999}}\\\phantom{100)99}978\\\phantom{100)}\underline{\phantom{99}900\phantom{99}}\\\phantom{100)999}785\\\phantom{100)}\underline{\phantom{999}700\phantom{9}}\\\phantom{100)9999}856\\\end{array}
Use the 7^{th} digit 6 from dividend 2297856
\begin{array}{l}\phantom{100)}0022978\phantom{14}\\100\overline{)2297856}\\\phantom{100)}\underline{\phantom{}200\phantom{9999}}\\\phantom{100)9}297\\\phantom{100)}\underline{\phantom{9}200\phantom{999}}\\\phantom{100)99}978\\\phantom{100)}\underline{\phantom{99}900\phantom{99}}\\\phantom{100)999}785\\\phantom{100)}\underline{\phantom{999}700\phantom{9}}\\\phantom{100)9999}856\\\phantom{100)}\underline{\phantom{9999}800\phantom{}}\\\phantom{100)99999}56\\\end{array}
Find closest multiple of 100 to 856. We see that 8 \times 100 = 800 is the nearest. Now subtract 800 from 856 to get reminder 56. Add 8 to quotient.
\text{Quotient: }22978 \text{Reminder: }56
Since 56 is less than 100, stop the division. The reminder is 56. The topmost line 0022978 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 22978.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}