Solve for a
a=-\frac{b}{5}-\frac{c}{25}-\frac{d}{125}+\frac{229}{625}
Solve for b
b=-\frac{c}{5}-\frac{d}{25}-5a+\frac{229}{125}
Share
Copied to clipboard
625a+125b+25c+5d=229
Swap sides so that all variable terms are on the left hand side.
625a+25c+5d=229-125b
Subtract 125b from both sides.
625a+5d=229-125b-25c
Subtract 25c from both sides.
625a=229-125b-25c-5d
Subtract 5d from both sides.
625a=229-5d-25c-125b
The equation is in standard form.
\frac{625a}{625}=\frac{229-5d-25c-125b}{625}
Divide both sides by 625.
a=\frac{229-5d-25c-125b}{625}
Dividing by 625 undoes the multiplication by 625.
a=-\frac{b}{5}-\frac{c}{25}-\frac{d}{125}+\frac{229}{625}
Divide 229-125b-25c-5d by 625.
625a+125b+25c+5d=229
Swap sides so that all variable terms are on the left hand side.
125b+25c+5d=229-625a
Subtract 625a from both sides.
125b+5d=229-625a-25c
Subtract 25c from both sides.
125b=229-625a-25c-5d
Subtract 5d from both sides.
125b=229-5d-25c-625a
The equation is in standard form.
\frac{125b}{125}=\frac{229-5d-25c-625a}{125}
Divide both sides by 125.
b=\frac{229-5d-25c-625a}{125}
Dividing by 125 undoes the multiplication by 125.
b=-\frac{c}{5}-\frac{d}{25}-5a+\frac{229}{125}
Divide 229-625a-25c-5d by 125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}