Evaluate
\frac{228}{23}\approx 9.913043478
Factor
\frac{2 ^ {2} \cdot 3 \cdot 19}{23} = 9\frac{21}{23} = 9.91304347826087
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)228}\\\end{array}
Use the 1^{st} digit 2 from dividend 228
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)228}\\\end{array}
Since 2 is less than 23, use the next digit 2 from dividend 228 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)228}\\\end{array}
Use the 2^{nd} digit 2 from dividend 228
\begin{array}{l}\phantom{23)}00\phantom{4}\\23\overline{)228}\\\end{array}
Since 22 is less than 23, use the next digit 8 from dividend 228 and add 0 to the quotient
\begin{array}{l}\phantom{23)}00\phantom{5}\\23\overline{)228}\\\end{array}
Use the 3^{rd} digit 8 from dividend 228
\begin{array}{l}\phantom{23)}009\phantom{6}\\23\overline{)228}\\\phantom{23)}\underline{\phantom{}207\phantom{}}\\\phantom{23)9}21\\\end{array}
Find closest multiple of 23 to 228. We see that 9 \times 23 = 207 is the nearest. Now subtract 207 from 228 to get reminder 21. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }21
Since 21 is less than 23, stop the division. The reminder is 21. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}