Evaluate
\frac{113}{12}\approx 9.416666667
Factor
\frac{113}{2 ^ {2} \cdot 3} = 9\frac{5}{12} = 9.416666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)226}\\\end{array}
Use the 1^{st} digit 2 from dividend 226
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)226}\\\end{array}
Since 2 is less than 24, use the next digit 2 from dividend 226 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)226}\\\end{array}
Use the 2^{nd} digit 2 from dividend 226
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)226}\\\end{array}
Since 22 is less than 24, use the next digit 6 from dividend 226 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)226}\\\end{array}
Use the 3^{rd} digit 6 from dividend 226
\begin{array}{l}\phantom{24)}009\phantom{6}\\24\overline{)226}\\\phantom{24)}\underline{\phantom{}216\phantom{}}\\\phantom{24)9}10\\\end{array}
Find closest multiple of 24 to 226. We see that 9 \times 24 = 216 is the nearest. Now subtract 216 from 226 to get reminder 10. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }10
Since 10 is less than 24, stop the division. The reminder is 10. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}