Evaluate
\frac{2253}{1000}=2.253
Factor
\frac{3 \cdot 751}{2 ^ {3} \cdot 5 ^ {3}} = 2\frac{253}{1000} = 2.253
Share
Copied to clipboard
\begin{array}{l}\phantom{100000000)}\phantom{1}\\100000000\overline{)225300000}\\\end{array}
Use the 1^{st} digit 2 from dividend 225300000
\begin{array}{l}\phantom{100000000)}0\phantom{2}\\100000000\overline{)225300000}\\\end{array}
Since 2 is less than 100000000, use the next digit 2 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}0\phantom{3}\\100000000\overline{)225300000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 225300000
\begin{array}{l}\phantom{100000000)}00\phantom{4}\\100000000\overline{)225300000}\\\end{array}
Since 22 is less than 100000000, use the next digit 5 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}00\phantom{5}\\100000000\overline{)225300000}\\\end{array}
Use the 3^{rd} digit 5 from dividend 225300000
\begin{array}{l}\phantom{100000000)}000\phantom{6}\\100000000\overline{)225300000}\\\end{array}
Since 225 is less than 100000000, use the next digit 3 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}000\phantom{7}\\100000000\overline{)225300000}\\\end{array}
Use the 4^{th} digit 3 from dividend 225300000
\begin{array}{l}\phantom{100000000)}0000\phantom{8}\\100000000\overline{)225300000}\\\end{array}
Since 2253 is less than 100000000, use the next digit 0 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}0000\phantom{9}\\100000000\overline{)225300000}\\\end{array}
Use the 5^{th} digit 0 from dividend 225300000
\begin{array}{l}\phantom{100000000)}00000\phantom{10}\\100000000\overline{)225300000}\\\end{array}
Since 22530 is less than 100000000, use the next digit 0 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}00000\phantom{11}\\100000000\overline{)225300000}\\\end{array}
Use the 6^{th} digit 0 from dividend 225300000
\begin{array}{l}\phantom{100000000)}000000\phantom{12}\\100000000\overline{)225300000}\\\end{array}
Since 225300 is less than 100000000, use the next digit 0 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}000000\phantom{13}\\100000000\overline{)225300000}\\\end{array}
Use the 7^{th} digit 0 from dividend 225300000
\begin{array}{l}\phantom{100000000)}0000000\phantom{14}\\100000000\overline{)225300000}\\\end{array}
Since 2253000 is less than 100000000, use the next digit 0 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}0000000\phantom{15}\\100000000\overline{)225300000}\\\end{array}
Use the 8^{th} digit 0 from dividend 225300000
\begin{array}{l}\phantom{100000000)}00000000\phantom{16}\\100000000\overline{)225300000}\\\end{array}
Since 22530000 is less than 100000000, use the next digit 0 from dividend 225300000 and add 0 to the quotient
\begin{array}{l}\phantom{100000000)}00000000\phantom{17}\\100000000\overline{)225300000}\\\end{array}
Use the 9^{th} digit 0 from dividend 225300000
\begin{array}{l}\phantom{100000000)}000000002\phantom{18}\\100000000\overline{)225300000}\\\phantom{100000000)}\underline{\phantom{}200000000\phantom{}}\\\phantom{100000000)9}25300000\\\end{array}
Find closest multiple of 100000000 to 225300000. We see that 2 \times 100000000 = 200000000 is the nearest. Now subtract 200000000 from 225300000 to get reminder 25300000. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }25300000
Since 25300000 is less than 100000000, stop the division. The reminder is 25300000. The topmost line 000000002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}