Solve for x
x=\frac{7}{15}\approx 0.466666667
x = \frac{23}{15} = 1\frac{8}{15} \approx 1.533333333
Graph
Share
Copied to clipboard
\frac{225\left(-x+1\right)^{2}}{225}=\frac{64}{225}
Divide both sides by 225.
\left(-x+1\right)^{2}=\frac{64}{225}
Dividing by 225 undoes the multiplication by 225.
-x+1=\frac{8}{15} -x+1=-\frac{8}{15}
Take the square root of both sides of the equation.
-x+1-1=\frac{8}{15}-1 -x+1-1=-\frac{8}{15}-1
Subtract 1 from both sides of the equation.
-x=\frac{8}{15}-1 -x=-\frac{8}{15}-1
Subtracting 1 from itself leaves 0.
-x=-\frac{7}{15}
Subtract 1 from \frac{8}{15}.
-x=-\frac{23}{15}
Subtract 1 from -\frac{8}{15}.
\frac{-x}{-1}=-\frac{\frac{7}{15}}{-1} \frac{-x}{-1}=-\frac{\frac{23}{15}}{-1}
Divide both sides by -1.
x=-\frac{\frac{7}{15}}{-1} x=-\frac{\frac{23}{15}}{-1}
Dividing by -1 undoes the multiplication by -1.
x=\frac{7}{15}
Divide -\frac{7}{15} by -1.
x=\frac{23}{15}
Divide -\frac{23}{15} by -1.
x=\frac{7}{15} x=\frac{23}{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}