Solve for b
b=-9
b=25
Share
Copied to clipboard
225=b^{2}-16b
Use the distributive property to multiply b by b-16.
b^{2}-16b=225
Swap sides so that all variable terms are on the left hand side.
b^{2}-16b-225=0
Subtract 225 from both sides.
b=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-225\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-16\right)±\sqrt{256-4\left(-225\right)}}{2}
Square -16.
b=\frac{-\left(-16\right)±\sqrt{256+900}}{2}
Multiply -4 times -225.
b=\frac{-\left(-16\right)±\sqrt{1156}}{2}
Add 256 to 900.
b=\frac{-\left(-16\right)±34}{2}
Take the square root of 1156.
b=\frac{16±34}{2}
The opposite of -16 is 16.
b=\frac{50}{2}
Now solve the equation b=\frac{16±34}{2} when ± is plus. Add 16 to 34.
b=25
Divide 50 by 2.
b=-\frac{18}{2}
Now solve the equation b=\frac{16±34}{2} when ± is minus. Subtract 34 from 16.
b=-9
Divide -18 by 2.
b=25 b=-9
The equation is now solved.
225=b^{2}-16b
Use the distributive property to multiply b by b-16.
b^{2}-16b=225
Swap sides so that all variable terms are on the left hand side.
b^{2}-16b+\left(-8\right)^{2}=225+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-16b+64=225+64
Square -8.
b^{2}-16b+64=289
Add 225 to 64.
\left(b-8\right)^{2}=289
Factor b^{2}-16b+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-8\right)^{2}}=\sqrt{289}
Take the square root of both sides of the equation.
b-8=17 b-8=-17
Simplify.
b=25 b=-9
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}