Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

225=50x-x^{2}-400
Use the distributive property to multiply x-10 by 40-x and combine like terms.
50x-x^{2}-400=225
Swap sides so that all variable terms are on the left hand side.
50x-x^{2}-400-225=0
Subtract 225 from both sides.
50x-x^{2}-625=0
Subtract 225 from -400 to get -625.
-x^{2}+50x-625=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-50±\sqrt{50^{2}-4\left(-1\right)\left(-625\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 50 for b, and -625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\left(-1\right)\left(-625\right)}}{2\left(-1\right)}
Square 50.
x=\frac{-50±\sqrt{2500+4\left(-625\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-50±\sqrt{2500-2500}}{2\left(-1\right)}
Multiply 4 times -625.
x=\frac{-50±\sqrt{0}}{2\left(-1\right)}
Add 2500 to -2500.
x=-\frac{50}{2\left(-1\right)}
Take the square root of 0.
x=-\frac{50}{-2}
Multiply 2 times -1.
x=25
Divide -50 by -2.
225=50x-x^{2}-400
Use the distributive property to multiply x-10 by 40-x and combine like terms.
50x-x^{2}-400=225
Swap sides so that all variable terms are on the left hand side.
50x-x^{2}=225+400
Add 400 to both sides.
50x-x^{2}=625
Add 225 and 400 to get 625.
-x^{2}+50x=625
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+50x}{-1}=\frac{625}{-1}
Divide both sides by -1.
x^{2}+\frac{50}{-1}x=\frac{625}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-50x=\frac{625}{-1}
Divide 50 by -1.
x^{2}-50x=-625
Divide 625 by -1.
x^{2}-50x+\left(-25\right)^{2}=-625+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=-625+625
Square -25.
x^{2}-50x+625=0
Add -625 to 625.
\left(x-25\right)^{2}=0
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-25=0 x-25=0
Simplify.
x=25 x=25
Add 25 to both sides of the equation.
x=25
The equation is now solved. Solutions are the same.