Evaluate
14
Factor
2\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)224}\\\end{array}
Use the 1^{st} digit 2 from dividend 224
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)224}\\\end{array}
Since 2 is less than 16, use the next digit 2 from dividend 224 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)224}\\\end{array}
Use the 2^{nd} digit 2 from dividend 224
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)224}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}6\\\end{array}
Find closest multiple of 16 to 22. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 22 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)224}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}64\\\end{array}
Use the 3^{rd} digit 4 from dividend 224
\begin{array}{l}\phantom{16)}014\phantom{6}\\16\overline{)224}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}64\\\phantom{16)}\underline{\phantom{9}64\phantom{}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 64. We see that 4 \times 16 = 64 is the nearest. Now subtract 64 from 64 to get reminder 0. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}