Evaluate
\frac{16}{9}\approx 1.777777778
Factor
\frac{2 ^ {4}}{3 ^ {2}} = 1\frac{7}{9} = 1.7777777777777777
Share
Copied to clipboard
\begin{array}{l}\phantom{126)}\phantom{1}\\126\overline{)224}\\\end{array}
Use the 1^{st} digit 2 from dividend 224
\begin{array}{l}\phantom{126)}0\phantom{2}\\126\overline{)224}\\\end{array}
Since 2 is less than 126, use the next digit 2 from dividend 224 and add 0 to the quotient
\begin{array}{l}\phantom{126)}0\phantom{3}\\126\overline{)224}\\\end{array}
Use the 2^{nd} digit 2 from dividend 224
\begin{array}{l}\phantom{126)}00\phantom{4}\\126\overline{)224}\\\end{array}
Since 22 is less than 126, use the next digit 4 from dividend 224 and add 0 to the quotient
\begin{array}{l}\phantom{126)}00\phantom{5}\\126\overline{)224}\\\end{array}
Use the 3^{rd} digit 4 from dividend 224
\begin{array}{l}\phantom{126)}001\phantom{6}\\126\overline{)224}\\\phantom{126)}\underline{\phantom{}126\phantom{}}\\\phantom{126)9}98\\\end{array}
Find closest multiple of 126 to 224. We see that 1 \times 126 = 126 is the nearest. Now subtract 126 from 224 to get reminder 98. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }98
Since 98 is less than 126, stop the division. The reminder is 98. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}