Solve for x
x=\frac{2\sqrt{14}}{15}\approx 0.498887652
x=-\frac{2\sqrt{14}}{15}\approx -0.498887652
Graph
Share
Copied to clipboard
224=90x^{2}\times 10
Multiply x and x to get x^{2}.
224=900x^{2}
Multiply 90 and 10 to get 900.
900x^{2}=224
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{224}{900}
Divide both sides by 900.
x^{2}=\frac{56}{225}
Reduce the fraction \frac{224}{900} to lowest terms by extracting and canceling out 4.
x=\frac{2\sqrt{14}}{15} x=-\frac{2\sqrt{14}}{15}
Take the square root of both sides of the equation.
224=90x^{2}\times 10
Multiply x and x to get x^{2}.
224=900x^{2}
Multiply 90 and 10 to get 900.
900x^{2}=224
Swap sides so that all variable terms are on the left hand side.
900x^{2}-224=0
Subtract 224 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 900\left(-224\right)}}{2\times 900}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 900 for a, 0 for b, and -224 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 900\left(-224\right)}}{2\times 900}
Square 0.
x=\frac{0±\sqrt{-3600\left(-224\right)}}{2\times 900}
Multiply -4 times 900.
x=\frac{0±\sqrt{806400}}{2\times 900}
Multiply -3600 times -224.
x=\frac{0±240\sqrt{14}}{2\times 900}
Take the square root of 806400.
x=\frac{0±240\sqrt{14}}{1800}
Multiply 2 times 900.
x=\frac{2\sqrt{14}}{15}
Now solve the equation x=\frac{0±240\sqrt{14}}{1800} when ± is plus.
x=-\frac{2\sqrt{14}}{15}
Now solve the equation x=\frac{0±240\sqrt{14}}{1800} when ± is minus.
x=\frac{2\sqrt{14}}{15} x=-\frac{2\sqrt{14}}{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}