Solve for x
x=\frac{\sqrt{51142}}{2222}-\frac{3}{1111}\approx 0.099075594
x=-\frac{\sqrt{51142}}{2222}-\frac{3}{1111}\approx -0.104476134
Graph
Share
Copied to clipboard
2222x^{2}+12x-23=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 2222\left(-23\right)}}{2\times 2222}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2222 for a, 12 for b, and -23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 2222\left(-23\right)}}{2\times 2222}
Square 12.
x=\frac{-12±\sqrt{144-8888\left(-23\right)}}{2\times 2222}
Multiply -4 times 2222.
x=\frac{-12±\sqrt{144+204424}}{2\times 2222}
Multiply -8888 times -23.
x=\frac{-12±\sqrt{204568}}{2\times 2222}
Add 144 to 204424.
x=\frac{-12±2\sqrt{51142}}{2\times 2222}
Take the square root of 204568.
x=\frac{-12±2\sqrt{51142}}{4444}
Multiply 2 times 2222.
x=\frac{2\sqrt{51142}-12}{4444}
Now solve the equation x=\frac{-12±2\sqrt{51142}}{4444} when ± is plus. Add -12 to 2\sqrt{51142}.
x=\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
Divide -12+2\sqrt{51142} by 4444.
x=\frac{-2\sqrt{51142}-12}{4444}
Now solve the equation x=\frac{-12±2\sqrt{51142}}{4444} when ± is minus. Subtract 2\sqrt{51142} from -12.
x=-\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
Divide -12-2\sqrt{51142} by 4444.
x=\frac{\sqrt{51142}}{2222}-\frac{3}{1111} x=-\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
The equation is now solved.
2222x^{2}+12x-23=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2222x^{2}+12x-23-\left(-23\right)=-\left(-23\right)
Add 23 to both sides of the equation.
2222x^{2}+12x=-\left(-23\right)
Subtracting -23 from itself leaves 0.
2222x^{2}+12x=23
Subtract -23 from 0.
\frac{2222x^{2}+12x}{2222}=\frac{23}{2222}
Divide both sides by 2222.
x^{2}+\frac{12}{2222}x=\frac{23}{2222}
Dividing by 2222 undoes the multiplication by 2222.
x^{2}+\frac{6}{1111}x=\frac{23}{2222}
Reduce the fraction \frac{12}{2222} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{6}{1111}x+\left(\frac{3}{1111}\right)^{2}=\frac{23}{2222}+\left(\frac{3}{1111}\right)^{2}
Divide \frac{6}{1111}, the coefficient of the x term, by 2 to get \frac{3}{1111}. Then add the square of \frac{3}{1111} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{1111}x+\frac{9}{1234321}=\frac{23}{2222}+\frac{9}{1234321}
Square \frac{3}{1111} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{1111}x+\frac{9}{1234321}=\frac{25571}{2468642}
Add \frac{23}{2222} to \frac{9}{1234321} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{1111}\right)^{2}=\frac{25571}{2468642}
Factor x^{2}+\frac{6}{1111}x+\frac{9}{1234321}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{1111}\right)^{2}}=\sqrt{\frac{25571}{2468642}}
Take the square root of both sides of the equation.
x+\frac{3}{1111}=\frac{\sqrt{51142}}{2222} x+\frac{3}{1111}=-\frac{\sqrt{51142}}{2222}
Simplify.
x=\frac{\sqrt{51142}}{2222}-\frac{3}{1111} x=-\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
Subtract \frac{3}{1111} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}