Evaluate
\frac{550000}{3}\approx 183333.333333333
Factor
\frac{2 ^ {4} \cdot 5 ^ {5} \cdot 11}{3} = 183333\frac{1}{3} = 183333.33333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)2200000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2200000
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)2200000}\\\end{array}
Since 2 is less than 12, use the next digit 2 from dividend 2200000 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)2200000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 2200000
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}10\\\end{array}
Find closest multiple of 12 to 22. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 22 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\end{array}
Use the 3^{rd} digit 0 from dividend 2200000
\begin{array}{l}\phantom{12)}018\phantom{6}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}4\\\end{array}
Find closest multiple of 12 to 100. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 100 to get reminder 4. Add 8 to quotient.
\begin{array}{l}\phantom{12)}018\phantom{7}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\end{array}
Use the 4^{th} digit 0 from dividend 2200000
\begin{array}{l}\phantom{12)}0183\phantom{8}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{999}}\\\phantom{12)999}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{12)}0183\phantom{9}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{999}}\\\phantom{12)999}40\\\end{array}
Use the 5^{th} digit 0 from dividend 2200000
\begin{array}{l}\phantom{12)}01833\phantom{10}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{999}}\\\phantom{12)999}40\\\phantom{12)}\underline{\phantom{999}36\phantom{99}}\\\phantom{12)9999}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{12)}01833\phantom{11}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{999}}\\\phantom{12)999}40\\\phantom{12)}\underline{\phantom{999}36\phantom{99}}\\\phantom{12)9999}40\\\end{array}
Use the 6^{th} digit 0 from dividend 2200000
\begin{array}{l}\phantom{12)}018333\phantom{12}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{999}}\\\phantom{12)999}40\\\phantom{12)}\underline{\phantom{999}36\phantom{99}}\\\phantom{12)9999}40\\\phantom{12)}\underline{\phantom{9999}36\phantom{9}}\\\phantom{12)99999}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{12)}018333\phantom{13}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{999}}\\\phantom{12)999}40\\\phantom{12)}\underline{\phantom{999}36\phantom{99}}\\\phantom{12)9999}40\\\phantom{12)}\underline{\phantom{9999}36\phantom{9}}\\\phantom{12)99999}40\\\end{array}
Use the 7^{th} digit 0 from dividend 2200000
\begin{array}{l}\phantom{12)}0183333\phantom{14}\\12\overline{)2200000}\\\phantom{12)}\underline{\phantom{}12\phantom{99999}}\\\phantom{12)}100\\\phantom{12)}\underline{\phantom{9}96\phantom{9999}}\\\phantom{12)99}40\\\phantom{12)}\underline{\phantom{99}36\phantom{999}}\\\phantom{12)999}40\\\phantom{12)}\underline{\phantom{999}36\phantom{99}}\\\phantom{12)9999}40\\\phantom{12)}\underline{\phantom{9999}36\phantom{9}}\\\phantom{12)99999}40\\\phantom{12)}\underline{\phantom{99999}36\phantom{}}\\\phantom{12)999999}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\text{Quotient: }183333 \text{Reminder: }4
Since 4 is less than 12, stop the division. The reminder is 4. The topmost line 0183333 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 183333.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}