Evaluate
\frac{44000}{7}\approx 6285.714285714
Factor
\frac{2 ^ {5} \cdot 5 ^ {3} \cdot 11}{7} = 6285\frac{5}{7} = 6285.714285714285
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)220000}\\\end{array}
Use the 1^{st} digit 2 from dividend 220000
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)220000}\\\end{array}
Since 2 is less than 35, use the next digit 2 from dividend 220000 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)220000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 220000
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)220000}\\\end{array}
Since 22 is less than 35, use the next digit 0 from dividend 220000 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)220000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 220000
\begin{array}{l}\phantom{35)}006\phantom{6}\\35\overline{)220000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}10\\\end{array}
Find closest multiple of 35 to 220. We see that 6 \times 35 = 210 is the nearest. Now subtract 210 from 220 to get reminder 10. Add 6 to quotient.
\begin{array}{l}\phantom{35)}006\phantom{7}\\35\overline{)220000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}100\\\end{array}
Use the 4^{th} digit 0 from dividend 220000
\begin{array}{l}\phantom{35)}0062\phantom{8}\\35\overline{)220000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}100\\\phantom{35)}\underline{\phantom{99}70\phantom{99}}\\\phantom{35)99}30\\\end{array}
Find closest multiple of 35 to 100. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 100 to get reminder 30. Add 2 to quotient.
\begin{array}{l}\phantom{35)}0062\phantom{9}\\35\overline{)220000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}100\\\phantom{35)}\underline{\phantom{99}70\phantom{99}}\\\phantom{35)99}300\\\end{array}
Use the 5^{th} digit 0 from dividend 220000
\begin{array}{l}\phantom{35)}00628\phantom{10}\\35\overline{)220000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}100\\\phantom{35)}\underline{\phantom{99}70\phantom{99}}\\\phantom{35)99}300\\\phantom{35)}\underline{\phantom{99}280\phantom{9}}\\\phantom{35)999}20\\\end{array}
Find closest multiple of 35 to 300. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 300 to get reminder 20. Add 8 to quotient.
\begin{array}{l}\phantom{35)}00628\phantom{11}\\35\overline{)220000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}100\\\phantom{35)}\underline{\phantom{99}70\phantom{99}}\\\phantom{35)99}300\\\phantom{35)}\underline{\phantom{99}280\phantom{9}}\\\phantom{35)999}200\\\end{array}
Use the 6^{th} digit 0 from dividend 220000
\begin{array}{l}\phantom{35)}006285\phantom{12}\\35\overline{)220000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}100\\\phantom{35)}\underline{\phantom{99}70\phantom{99}}\\\phantom{35)99}300\\\phantom{35)}\underline{\phantom{99}280\phantom{9}}\\\phantom{35)999}200\\\phantom{35)}\underline{\phantom{999}175\phantom{}}\\\phantom{35)9999}25\\\end{array}
Find closest multiple of 35 to 200. We see that 5 \times 35 = 175 is the nearest. Now subtract 175 from 200 to get reminder 25. Add 5 to quotient.
\text{Quotient: }6285 \text{Reminder: }25
Since 25 is less than 35, stop the division. The reminder is 25. The topmost line 006285 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6285.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}