Evaluate
\frac{2200}{377}\approx 5.835543767
Factor
\frac{2 ^ {3} \cdot 5 ^ {2} \cdot 11}{13 \cdot 29} = 5\frac{315}{377} = 5.835543766578249
Share
Copied to clipboard
\begin{array}{l}\phantom{377)}\phantom{1}\\377\overline{)2200}\\\end{array}
Use the 1^{st} digit 2 from dividend 2200
\begin{array}{l}\phantom{377)}0\phantom{2}\\377\overline{)2200}\\\end{array}
Since 2 is less than 377, use the next digit 2 from dividend 2200 and add 0 to the quotient
\begin{array}{l}\phantom{377)}0\phantom{3}\\377\overline{)2200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 2200
\begin{array}{l}\phantom{377)}00\phantom{4}\\377\overline{)2200}\\\end{array}
Since 22 is less than 377, use the next digit 0 from dividend 2200 and add 0 to the quotient
\begin{array}{l}\phantom{377)}00\phantom{5}\\377\overline{)2200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2200
\begin{array}{l}\phantom{377)}000\phantom{6}\\377\overline{)2200}\\\end{array}
Since 220 is less than 377, use the next digit 0 from dividend 2200 and add 0 to the quotient
\begin{array}{l}\phantom{377)}000\phantom{7}\\377\overline{)2200}\\\end{array}
Use the 4^{th} digit 0 from dividend 2200
\begin{array}{l}\phantom{377)}0005\phantom{8}\\377\overline{)2200}\\\phantom{377)}\underline{\phantom{}1885\phantom{}}\\\phantom{377)9}315\\\end{array}
Find closest multiple of 377 to 2200. We see that 5 \times 377 = 1885 is the nearest. Now subtract 1885 from 2200 to get reminder 315. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }315
Since 315 is less than 377, stop the division. The reminder is 315. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}