Solve for n
n=-22
n=20
Share
Copied to clipboard
220=\frac{1}{2}nn+\frac{1}{2}n\times 2
Use the distributive property to multiply \frac{1}{2}n by n+2.
220=\frac{1}{2}n^{2}+\frac{1}{2}n\times 2
Multiply n and n to get n^{2}.
220=\frac{1}{2}n^{2}+n
Cancel out 2 and 2.
\frac{1}{2}n^{2}+n=220
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}n^{2}+n-220=0
Subtract 220 from both sides.
n=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-220\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-220\right)}}{2\times \frac{1}{2}}
Square 1.
n=\frac{-1±\sqrt{1-2\left(-220\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
n=\frac{-1±\sqrt{1+440}}{2\times \frac{1}{2}}
Multiply -2 times -220.
n=\frac{-1±\sqrt{441}}{2\times \frac{1}{2}}
Add 1 to 440.
n=\frac{-1±21}{2\times \frac{1}{2}}
Take the square root of 441.
n=\frac{-1±21}{1}
Multiply 2 times \frac{1}{2}.
n=\frac{20}{1}
Now solve the equation n=\frac{-1±21}{1} when ± is plus. Add -1 to 21.
n=20
Divide 20 by 1.
n=-\frac{22}{1}
Now solve the equation n=\frac{-1±21}{1} when ± is minus. Subtract 21 from -1.
n=-22
Divide -22 by 1.
n=20 n=-22
The equation is now solved.
220=\frac{1}{2}nn+\frac{1}{2}n\times 2
Use the distributive property to multiply \frac{1}{2}n by n+2.
220=\frac{1}{2}n^{2}+\frac{1}{2}n\times 2
Multiply n and n to get n^{2}.
220=\frac{1}{2}n^{2}+n
Cancel out 2 and 2.
\frac{1}{2}n^{2}+n=220
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{1}{2}n^{2}+n}{\frac{1}{2}}=\frac{220}{\frac{1}{2}}
Multiply both sides by 2.
n^{2}+\frac{1}{\frac{1}{2}}n=\frac{220}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
n^{2}+2n=\frac{220}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
n^{2}+2n=440
Divide 220 by \frac{1}{2} by multiplying 220 by the reciprocal of \frac{1}{2}.
n^{2}+2n+1^{2}=440+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+2n+1=440+1
Square 1.
n^{2}+2n+1=441
Add 440 to 1.
\left(n+1\right)^{2}=441
Factor n^{2}+2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+1\right)^{2}}=\sqrt{441}
Take the square root of both sides of the equation.
n+1=21 n+1=-21
Simplify.
n=20 n=-22
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}