Solve for x
x = \frac{\sqrt{1081} + 39}{10} \approx 7.187856445
x=\frac{39-\sqrt{1081}}{10}\approx 0.612143555
Graph
Share
Copied to clipboard
39x-5x^{2}=22
Swap sides so that all variable terms are on the left hand side.
39x-5x^{2}-22=0
Subtract 22 from both sides.
-5x^{2}+39x-22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-39±\sqrt{39^{2}-4\left(-5\right)\left(-22\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 39 for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-39±\sqrt{1521-4\left(-5\right)\left(-22\right)}}{2\left(-5\right)}
Square 39.
x=\frac{-39±\sqrt{1521+20\left(-22\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-39±\sqrt{1521-440}}{2\left(-5\right)}
Multiply 20 times -22.
x=\frac{-39±\sqrt{1081}}{2\left(-5\right)}
Add 1521 to -440.
x=\frac{-39±\sqrt{1081}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{1081}-39}{-10}
Now solve the equation x=\frac{-39±\sqrt{1081}}{-10} when ± is plus. Add -39 to \sqrt{1081}.
x=\frac{39-\sqrt{1081}}{10}
Divide -39+\sqrt{1081} by -10.
x=\frac{-\sqrt{1081}-39}{-10}
Now solve the equation x=\frac{-39±\sqrt{1081}}{-10} when ± is minus. Subtract \sqrt{1081} from -39.
x=\frac{\sqrt{1081}+39}{10}
Divide -39-\sqrt{1081} by -10.
x=\frac{39-\sqrt{1081}}{10} x=\frac{\sqrt{1081}+39}{10}
The equation is now solved.
39x-5x^{2}=22
Swap sides so that all variable terms are on the left hand side.
-5x^{2}+39x=22
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+39x}{-5}=\frac{22}{-5}
Divide both sides by -5.
x^{2}+\frac{39}{-5}x=\frac{22}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{39}{5}x=\frac{22}{-5}
Divide 39 by -5.
x^{2}-\frac{39}{5}x=-\frac{22}{5}
Divide 22 by -5.
x^{2}-\frac{39}{5}x+\left(-\frac{39}{10}\right)^{2}=-\frac{22}{5}+\left(-\frac{39}{10}\right)^{2}
Divide -\frac{39}{5}, the coefficient of the x term, by 2 to get -\frac{39}{10}. Then add the square of -\frac{39}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{39}{5}x+\frac{1521}{100}=-\frac{22}{5}+\frac{1521}{100}
Square -\frac{39}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{39}{5}x+\frac{1521}{100}=\frac{1081}{100}
Add -\frac{22}{5} to \frac{1521}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{39}{10}\right)^{2}=\frac{1081}{100}
Factor x^{2}-\frac{39}{5}x+\frac{1521}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{10}\right)^{2}}=\sqrt{\frac{1081}{100}}
Take the square root of both sides of the equation.
x-\frac{39}{10}=\frac{\sqrt{1081}}{10} x-\frac{39}{10}=-\frac{\sqrt{1081}}{10}
Simplify.
x=\frac{\sqrt{1081}+39}{10} x=\frac{39-\sqrt{1081}}{10}
Add \frac{39}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}