Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+22x-48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-22±\sqrt{22^{2}-4\times 4\left(-48\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-22±\sqrt{484-4\times 4\left(-48\right)}}{2\times 4}
Square 22.
x=\frac{-22±\sqrt{484-16\left(-48\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-22±\sqrt{484+768}}{2\times 4}
Multiply -16 times -48.
x=\frac{-22±\sqrt{1252}}{2\times 4}
Add 484 to 768.
x=\frac{-22±2\sqrt{313}}{2\times 4}
Take the square root of 1252.
x=\frac{-22±2\sqrt{313}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{313}-22}{8}
Now solve the equation x=\frac{-22±2\sqrt{313}}{8} when ± is plus. Add -22 to 2\sqrt{313}.
x=\frac{\sqrt{313}-11}{4}
Divide -22+2\sqrt{313} by 8.
x=\frac{-2\sqrt{313}-22}{8}
Now solve the equation x=\frac{-22±2\sqrt{313}}{8} when ± is minus. Subtract 2\sqrt{313} from -22.
x=\frac{-\sqrt{313}-11}{4}
Divide -22-2\sqrt{313} by 8.
4x^{2}+22x-48=4\left(x-\frac{\sqrt{313}-11}{4}\right)\left(x-\frac{-\sqrt{313}-11}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11+\sqrt{313}}{4} for x_{1} and \frac{-11-\sqrt{313}}{4} for x_{2}.