Factor
2\left(3-x\right)\left(3x-2\right)
Evaluate
-6x^{2}+22x-12
Graph
Share
Copied to clipboard
2\left(11x-6-3x^{2}\right)
Factor out 2.
-3x^{2}+11x-6
Consider 11x-6-3x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=-3\left(-6\right)=18
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=9 b=2
The solution is the pair that gives sum 11.
\left(-3x^{2}+9x\right)+\left(2x-6\right)
Rewrite -3x^{2}+11x-6 as \left(-3x^{2}+9x\right)+\left(2x-6\right).
3x\left(-x+3\right)-2\left(-x+3\right)
Factor out 3x in the first and -2 in the second group.
\left(-x+3\right)\left(3x-2\right)
Factor out common term -x+3 by using distributive property.
2\left(-x+3\right)\left(3x-2\right)
Rewrite the complete factored expression.
-6x^{2}+22x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-22±\sqrt{22^{2}-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-22±\sqrt{484-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
Square 22.
x=\frac{-22±\sqrt{484+24\left(-12\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-22±\sqrt{484-288}}{2\left(-6\right)}
Multiply 24 times -12.
x=\frac{-22±\sqrt{196}}{2\left(-6\right)}
Add 484 to -288.
x=\frac{-22±14}{2\left(-6\right)}
Take the square root of 196.
x=\frac{-22±14}{-12}
Multiply 2 times -6.
x=-\frac{8}{-12}
Now solve the equation x=\frac{-22±14}{-12} when ± is plus. Add -22 to 14.
x=\frac{2}{3}
Reduce the fraction \frac{-8}{-12} to lowest terms by extracting and canceling out 4.
x=-\frac{36}{-12}
Now solve the equation x=\frac{-22±14}{-12} when ± is minus. Subtract 14 from -22.
x=3
Divide -36 by -12.
-6x^{2}+22x-12=-6\left(x-\frac{2}{3}\right)\left(x-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and 3 for x_{2}.
-6x^{2}+22x-12=-6\times \frac{-3x+2}{-3}\left(x-3\right)
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}+22x-12=2\left(-3x+2\right)\left(x-3\right)
Cancel out 3, the greatest common factor in -6 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}