Factor
\left(2x+11\right)\left(11x+3\right)
Evaluate
\left(2x+11\right)\left(11x+3\right)
Graph
Share
Copied to clipboard
a+b=127 ab=22\times 33=726
Factor the expression by grouping. First, the expression needs to be rewritten as 22x^{2}+ax+bx+33. To find a and b, set up a system to be solved.
1,726 2,363 3,242 6,121 11,66 22,33
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 726.
1+726=727 2+363=365 3+242=245 6+121=127 11+66=77 22+33=55
Calculate the sum for each pair.
a=6 b=121
The solution is the pair that gives sum 127.
\left(22x^{2}+6x\right)+\left(121x+33\right)
Rewrite 22x^{2}+127x+33 as \left(22x^{2}+6x\right)+\left(121x+33\right).
2x\left(11x+3\right)+11\left(11x+3\right)
Factor out 2x in the first and 11 in the second group.
\left(11x+3\right)\left(2x+11\right)
Factor out common term 11x+3 by using distributive property.
22x^{2}+127x+33=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-127±\sqrt{127^{2}-4\times 22\times 33}}{2\times 22}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-127±\sqrt{16129-4\times 22\times 33}}{2\times 22}
Square 127.
x=\frac{-127±\sqrt{16129-88\times 33}}{2\times 22}
Multiply -4 times 22.
x=\frac{-127±\sqrt{16129-2904}}{2\times 22}
Multiply -88 times 33.
x=\frac{-127±\sqrt{13225}}{2\times 22}
Add 16129 to -2904.
x=\frac{-127±115}{2\times 22}
Take the square root of 13225.
x=\frac{-127±115}{44}
Multiply 2 times 22.
x=-\frac{12}{44}
Now solve the equation x=\frac{-127±115}{44} when ± is plus. Add -127 to 115.
x=-\frac{3}{11}
Reduce the fraction \frac{-12}{44} to lowest terms by extracting and canceling out 4.
x=-\frac{242}{44}
Now solve the equation x=\frac{-127±115}{44} when ± is minus. Subtract 115 from -127.
x=-\frac{11}{2}
Reduce the fraction \frac{-242}{44} to lowest terms by extracting and canceling out 22.
22x^{2}+127x+33=22\left(x-\left(-\frac{3}{11}\right)\right)\left(x-\left(-\frac{11}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{11} for x_{1} and -\frac{11}{2} for x_{2}.
22x^{2}+127x+33=22\left(x+\frac{3}{11}\right)\left(x+\frac{11}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
22x^{2}+127x+33=22\times \frac{11x+3}{11}\left(x+\frac{11}{2}\right)
Add \frac{3}{11} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
22x^{2}+127x+33=22\times \frac{11x+3}{11}\times \frac{2x+11}{2}
Add \frac{11}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
22x^{2}+127x+33=22\times \frac{\left(11x+3\right)\left(2x+11\right)}{11\times 2}
Multiply \frac{11x+3}{11} times \frac{2x+11}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
22x^{2}+127x+33=22\times \frac{\left(11x+3\right)\left(2x+11\right)}{22}
Multiply 11 times 2.
22x^{2}+127x+33=\left(11x+3\right)\left(2x+11\right)
Cancel out 22, the greatest common factor in 22 and 22.
x ^ 2 +\frac{127}{22}x +\frac{3}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 22
r + s = -\frac{127}{22} rs = \frac{3}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{127}{44} - u s = -\frac{127}{44} + u
Two numbers r and s sum up to -\frac{127}{22} exactly when the average of the two numbers is \frac{1}{2}*-\frac{127}{22} = -\frac{127}{44}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{127}{44} - u) (-\frac{127}{44} + u) = \frac{3}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{3}{2}
\frac{16129}{1936} - u^2 = \frac{3}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{3}{2}-\frac{16129}{1936} = -\frac{13225}{1936}
Simplify the expression by subtracting \frac{16129}{1936} on both sides
u^2 = \frac{13225}{1936} u = \pm\sqrt{\frac{13225}{1936}} = \pm \frac{115}{44}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{127}{44} - \frac{115}{44} = -5.500 s = -\frac{127}{44} + \frac{115}{44} = -0.273
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}