Solve for p
p = \frac{5 \sqrt{11}}{11} \approx 1.507556723
p = -\frac{5 \sqrt{11}}{11} \approx -1.507556723
Share
Copied to clipboard
22p^{2}=50
Add 50 to both sides. Anything plus zero gives itself.
p^{2}=\frac{50}{22}
Divide both sides by 22.
p^{2}=\frac{25}{11}
Reduce the fraction \frac{50}{22} to lowest terms by extracting and canceling out 2.
p=\frac{5\sqrt{11}}{11} p=-\frac{5\sqrt{11}}{11}
Take the square root of both sides of the equation.
22p^{2}-50=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\times 22\left(-50\right)}}{2\times 22}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 22 for a, 0 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 22\left(-50\right)}}{2\times 22}
Square 0.
p=\frac{0±\sqrt{-88\left(-50\right)}}{2\times 22}
Multiply -4 times 22.
p=\frac{0±\sqrt{4400}}{2\times 22}
Multiply -88 times -50.
p=\frac{0±20\sqrt{11}}{2\times 22}
Take the square root of 4400.
p=\frac{0±20\sqrt{11}}{44}
Multiply 2 times 22.
p=\frac{5\sqrt{11}}{11}
Now solve the equation p=\frac{0±20\sqrt{11}}{44} when ± is plus.
p=-\frac{5\sqrt{11}}{11}
Now solve the equation p=\frac{0±20\sqrt{11}}{44} when ± is minus.
p=\frac{5\sqrt{11}}{11} p=-\frac{5\sqrt{11}}{11}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}