Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

22p^{2}=50
Add 50 to both sides. Anything plus zero gives itself.
p^{2}=\frac{50}{22}
Divide both sides by 22.
p^{2}=\frac{25}{11}
Reduce the fraction \frac{50}{22} to lowest terms by extracting and canceling out 2.
p=\frac{5\sqrt{11}}{11} p=-\frac{5\sqrt{11}}{11}
Take the square root of both sides of the equation.
22p^{2}-50=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\times 22\left(-50\right)}}{2\times 22}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 22 for a, 0 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 22\left(-50\right)}}{2\times 22}
Square 0.
p=\frac{0±\sqrt{-88\left(-50\right)}}{2\times 22}
Multiply -4 times 22.
p=\frac{0±\sqrt{4400}}{2\times 22}
Multiply -88 times -50.
p=\frac{0±20\sqrt{11}}{2\times 22}
Take the square root of 4400.
p=\frac{0±20\sqrt{11}}{44}
Multiply 2 times 22.
p=\frac{5\sqrt{11}}{11}
Now solve the equation p=\frac{0±20\sqrt{11}}{44} when ± is plus.
p=-\frac{5\sqrt{11}}{11}
Now solve the equation p=\frac{0±20\sqrt{11}}{44} when ± is minus.
p=\frac{5\sqrt{11}}{11} p=-\frac{5\sqrt{11}}{11}
The equation is now solved.