Factor
\left(11p-2\right)\left(2p+5\right)
Evaluate
\left(11p-2\right)\left(2p+5\right)
Share
Copied to clipboard
a+b=51 ab=22\left(-10\right)=-220
Factor the expression by grouping. First, the expression needs to be rewritten as 22p^{2}+ap+bp-10. To find a and b, set up a system to be solved.
-1,220 -2,110 -4,55 -5,44 -10,22 -11,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -220.
-1+220=219 -2+110=108 -4+55=51 -5+44=39 -10+22=12 -11+20=9
Calculate the sum for each pair.
a=-4 b=55
The solution is the pair that gives sum 51.
\left(22p^{2}-4p\right)+\left(55p-10\right)
Rewrite 22p^{2}+51p-10 as \left(22p^{2}-4p\right)+\left(55p-10\right).
2p\left(11p-2\right)+5\left(11p-2\right)
Factor out 2p in the first and 5 in the second group.
\left(11p-2\right)\left(2p+5\right)
Factor out common term 11p-2 by using distributive property.
22p^{2}+51p-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-51±\sqrt{51^{2}-4\times 22\left(-10\right)}}{2\times 22}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-51±\sqrt{2601-4\times 22\left(-10\right)}}{2\times 22}
Square 51.
p=\frac{-51±\sqrt{2601-88\left(-10\right)}}{2\times 22}
Multiply -4 times 22.
p=\frac{-51±\sqrt{2601+880}}{2\times 22}
Multiply -88 times -10.
p=\frac{-51±\sqrt{3481}}{2\times 22}
Add 2601 to 880.
p=\frac{-51±59}{2\times 22}
Take the square root of 3481.
p=\frac{-51±59}{44}
Multiply 2 times 22.
p=\frac{8}{44}
Now solve the equation p=\frac{-51±59}{44} when ± is plus. Add -51 to 59.
p=\frac{2}{11}
Reduce the fraction \frac{8}{44} to lowest terms by extracting and canceling out 4.
p=-\frac{110}{44}
Now solve the equation p=\frac{-51±59}{44} when ± is minus. Subtract 59 from -51.
p=-\frac{5}{2}
Reduce the fraction \frac{-110}{44} to lowest terms by extracting and canceling out 22.
22p^{2}+51p-10=22\left(p-\frac{2}{11}\right)\left(p-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{11} for x_{1} and -\frac{5}{2} for x_{2}.
22p^{2}+51p-10=22\left(p-\frac{2}{11}\right)\left(p+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
22p^{2}+51p-10=22\times \frac{11p-2}{11}\left(p+\frac{5}{2}\right)
Subtract \frac{2}{11} from p by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
22p^{2}+51p-10=22\times \frac{11p-2}{11}\times \frac{2p+5}{2}
Add \frac{5}{2} to p by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
22p^{2}+51p-10=22\times \frac{\left(11p-2\right)\left(2p+5\right)}{11\times 2}
Multiply \frac{11p-2}{11} times \frac{2p+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
22p^{2}+51p-10=22\times \frac{\left(11p-2\right)\left(2p+5\right)}{22}
Multiply 11 times 2.
22p^{2}+51p-10=\left(11p-2\right)\left(2p+5\right)
Cancel out 22, the greatest common factor in 22 and 22.
x ^ 2 +\frac{51}{22}x -\frac{5}{11} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 22
r + s = -\frac{51}{22} rs = -\frac{5}{11}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{51}{44} - u s = -\frac{51}{44} + u
Two numbers r and s sum up to -\frac{51}{22} exactly when the average of the two numbers is \frac{1}{2}*-\frac{51}{22} = -\frac{51}{44}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{51}{44} - u) (-\frac{51}{44} + u) = -\frac{5}{11}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{11}
\frac{2601}{1936} - u^2 = -\frac{5}{11}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{11}-\frac{2601}{1936} = -\frac{3481}{1936}
Simplify the expression by subtracting \frac{2601}{1936} on both sides
u^2 = \frac{3481}{1936} u = \pm\sqrt{\frac{3481}{1936}} = \pm \frac{59}{44}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{51}{44} - \frac{59}{44} = -2.500 s = -\frac{51}{44} + \frac{59}{44} = 0.182
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}