Solve for a
a=\frac{-b-32}{17}
Solve for b
b=-17a-32
Share
Copied to clipboard
22a+32=5a-b
Subtract 4 from 36 to get 32.
22a+32-5a=-b
Subtract 5a from both sides.
17a+32=-b
Combine 22a and -5a to get 17a.
17a=-b-32
Subtract 32 from both sides.
\frac{17a}{17}=\frac{-b-32}{17}
Divide both sides by 17.
a=\frac{-b-32}{17}
Dividing by 17 undoes the multiplication by 17.
22a+32=5a-b
Subtract 4 from 36 to get 32.
5a-b=22a+32
Swap sides so that all variable terms are on the left hand side.
-b=22a+32-5a
Subtract 5a from both sides.
-b=17a+32
Combine 22a and -5a to get 17a.
\frac{-b}{-1}=\frac{17a+32}{-1}
Divide both sides by -1.
b=\frac{17a+32}{-1}
Dividing by -1 undoes the multiplication by -1.
b=-17a-32
Divide 17a+32 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}