Solve for w
w>-\frac{25}{2}
Share
Copied to clipboard
w+13>\frac{11}{22}
Divide both sides by 22. Since 22 is positive, the inequality direction remains the same.
w+13>\frac{1}{2}
Reduce the fraction \frac{11}{22} to lowest terms by extracting and canceling out 11.
w>\frac{1}{2}-13
Subtract 13 from both sides.
w>\frac{1}{2}-\frac{26}{2}
Convert 13 to fraction \frac{26}{2}.
w>\frac{1-26}{2}
Since \frac{1}{2} and \frac{26}{2} have the same denominator, subtract them by subtracting their numerators.
w>-\frac{25}{2}
Subtract 26 from 1 to get -25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}