Evaluate
\frac{22}{5}=4.4
Factor
\frac{2 \cdot 11}{5} = 4\frac{2}{5} = 4.4
Share
Copied to clipboard
22\sqrt{\frac{\left(\frac{1}{4}+1-\frac{1}{3}-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
22\sqrt{\frac{\left(\frac{1}{4}+\frac{4}{4}-\frac{1}{3}-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Convert 1 to fraction \frac{4}{4}.
22\sqrt{\frac{\left(\frac{1+4}{4}-\frac{1}{3}-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Since \frac{1}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
22\sqrt{\frac{\left(\frac{5}{4}-\frac{1}{3}-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Add 1 and 4 to get 5.
22\sqrt{\frac{\left(\frac{15}{12}-\frac{4}{12}-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{1}{3} to fractions with denominator 12.
22\sqrt{\frac{\left(\frac{15-4}{12}-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Since \frac{15}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
22\sqrt{\frac{\left(\frac{11}{12}-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Subtract 4 from 15 to get 11.
22\sqrt{\frac{\left(\frac{11}{12}-\frac{6}{12}\right)\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Least common multiple of 12 and 2 is 12. Convert \frac{11}{12} and \frac{1}{2} to fractions with denominator 12.
22\sqrt{\frac{\frac{11-6}{12}\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Since \frac{11}{12} and \frac{6}{12} have the same denominator, subtract them by subtracting their numerators.
22\sqrt{\frac{\frac{5}{12}\left(1-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Subtract 6 from 11 to get 5.
22\sqrt{\frac{\frac{5}{12}\left(\frac{5}{5}-\frac{1}{5}\right)\left(2+\frac{2}{5}\right)}{20}}
Convert 1 to fraction \frac{5}{5}.
22\sqrt{\frac{\frac{5}{12}\times \frac{5-1}{5}\left(2+\frac{2}{5}\right)}{20}}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
22\sqrt{\frac{\frac{5}{12}\times \frac{4}{5}\left(2+\frac{2}{5}\right)}{20}}
Subtract 1 from 5 to get 4.
22\sqrt{\frac{\frac{5\times 4}{12\times 5}\left(2+\frac{2}{5}\right)}{20}}
Multiply \frac{5}{12} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
22\sqrt{\frac{\frac{4}{12}\left(2+\frac{2}{5}\right)}{20}}
Cancel out 5 in both numerator and denominator.
22\sqrt{\frac{\frac{1}{3}\left(2+\frac{2}{5}\right)}{20}}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
22\sqrt{\frac{\frac{1}{3}\left(\frac{10}{5}+\frac{2}{5}\right)}{20}}
Convert 2 to fraction \frac{10}{5}.
22\sqrt{\frac{\frac{1}{3}\times \frac{10+2}{5}}{20}}
Since \frac{10}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
22\sqrt{\frac{\frac{1}{3}\times \frac{12}{5}}{20}}
Add 10 and 2 to get 12.
22\sqrt{\frac{\frac{1\times 12}{3\times 5}}{20}}
Multiply \frac{1}{3} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
22\sqrt{\frac{\frac{12}{15}}{20}}
Do the multiplications in the fraction \frac{1\times 12}{3\times 5}.
22\sqrt{\frac{\frac{4}{5}}{20}}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
22\sqrt{\frac{4}{5\times 20}}
Express \frac{\frac{4}{5}}{20} as a single fraction.
22\sqrt{\frac{4}{100}}
Multiply 5 and 20 to get 100.
22\sqrt{\frac{1}{25}}
Reduce the fraction \frac{4}{100} to lowest terms by extracting and canceling out 4.
22\times \frac{1}{5}
Rewrite the square root of the division \frac{1}{25} as the division of square roots \frac{\sqrt{1}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{22}{5}
Multiply 22 and \frac{1}{5} to get \frac{22}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}