Evaluate
\frac{14662}{3}\approx 4887.333333333
Factor
\frac{2 \cdot 7331}{3} = 4887\frac{1}{3} = 4887.333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)219930}\\\end{array}
Use the 1^{st} digit 2 from dividend 219930
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)219930}\\\end{array}
Since 2 is less than 45, use the next digit 1 from dividend 219930 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)219930}\\\end{array}
Use the 2^{nd} digit 1 from dividend 219930
\begin{array}{l}\phantom{45)}00\phantom{4}\\45\overline{)219930}\\\end{array}
Since 21 is less than 45, use the next digit 9 from dividend 219930 and add 0 to the quotient
\begin{array}{l}\phantom{45)}00\phantom{5}\\45\overline{)219930}\\\end{array}
Use the 3^{rd} digit 9 from dividend 219930
\begin{array}{l}\phantom{45)}004\phantom{6}\\45\overline{)219930}\\\phantom{45)}\underline{\phantom{}180\phantom{999}}\\\phantom{45)9}39\\\end{array}
Find closest multiple of 45 to 219. We see that 4 \times 45 = 180 is the nearest. Now subtract 180 from 219 to get reminder 39. Add 4 to quotient.
\begin{array}{l}\phantom{45)}004\phantom{7}\\45\overline{)219930}\\\phantom{45)}\underline{\phantom{}180\phantom{999}}\\\phantom{45)9}399\\\end{array}
Use the 4^{th} digit 9 from dividend 219930
\begin{array}{l}\phantom{45)}0048\phantom{8}\\45\overline{)219930}\\\phantom{45)}\underline{\phantom{}180\phantom{999}}\\\phantom{45)9}399\\\phantom{45)}\underline{\phantom{9}360\phantom{99}}\\\phantom{45)99}39\\\end{array}
Find closest multiple of 45 to 399. We see that 8 \times 45 = 360 is the nearest. Now subtract 360 from 399 to get reminder 39. Add 8 to quotient.
\begin{array}{l}\phantom{45)}0048\phantom{9}\\45\overline{)219930}\\\phantom{45)}\underline{\phantom{}180\phantom{999}}\\\phantom{45)9}399\\\phantom{45)}\underline{\phantom{9}360\phantom{99}}\\\phantom{45)99}393\\\end{array}
Use the 5^{th} digit 3 from dividend 219930
\begin{array}{l}\phantom{45)}00488\phantom{10}\\45\overline{)219930}\\\phantom{45)}\underline{\phantom{}180\phantom{999}}\\\phantom{45)9}399\\\phantom{45)}\underline{\phantom{9}360\phantom{99}}\\\phantom{45)99}393\\\phantom{45)}\underline{\phantom{99}360\phantom{9}}\\\phantom{45)999}33\\\end{array}
Find closest multiple of 45 to 393. We see that 8 \times 45 = 360 is the nearest. Now subtract 360 from 393 to get reminder 33. Add 8 to quotient.
\begin{array}{l}\phantom{45)}00488\phantom{11}\\45\overline{)219930}\\\phantom{45)}\underline{\phantom{}180\phantom{999}}\\\phantom{45)9}399\\\phantom{45)}\underline{\phantom{9}360\phantom{99}}\\\phantom{45)99}393\\\phantom{45)}\underline{\phantom{99}360\phantom{9}}\\\phantom{45)999}330\\\end{array}
Use the 6^{th} digit 0 from dividend 219930
\begin{array}{l}\phantom{45)}004887\phantom{12}\\45\overline{)219930}\\\phantom{45)}\underline{\phantom{}180\phantom{999}}\\\phantom{45)9}399\\\phantom{45)}\underline{\phantom{9}360\phantom{99}}\\\phantom{45)99}393\\\phantom{45)}\underline{\phantom{99}360\phantom{9}}\\\phantom{45)999}330\\\phantom{45)}\underline{\phantom{999}315\phantom{}}\\\phantom{45)9999}15\\\end{array}
Find closest multiple of 45 to 330. We see that 7 \times 45 = 315 is the nearest. Now subtract 315 from 330 to get reminder 15. Add 7 to quotient.
\text{Quotient: }4887 \text{Reminder: }15
Since 15 is less than 45, stop the division. The reminder is 15. The topmost line 004887 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4887.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}