Solve for x (complex solution)
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73}\approx 0.02739726+0.13234134i
x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}\approx 0.02739726-0.13234134i
Graph
Share
Copied to clipboard
219x^{2}-12x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 219\times 4}}{2\times 219}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 219 for a, -12 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 219\times 4}}{2\times 219}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-876\times 4}}{2\times 219}
Multiply -4 times 219.
x=\frac{-\left(-12\right)±\sqrt{144-3504}}{2\times 219}
Multiply -876 times 4.
x=\frac{-\left(-12\right)±\sqrt{-3360}}{2\times 219}
Add 144 to -3504.
x=\frac{-\left(-12\right)±4\sqrt{210}i}{2\times 219}
Take the square root of -3360.
x=\frac{12±4\sqrt{210}i}{2\times 219}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{210}i}{438}
Multiply 2 times 219.
x=\frac{12+4\sqrt{210}i}{438}
Now solve the equation x=\frac{12±4\sqrt{210}i}{438} when ± is plus. Add 12 to 4i\sqrt{210}.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Divide 12+4i\sqrt{210} by 438.
x=\frac{-4\sqrt{210}i+12}{438}
Now solve the equation x=\frac{12±4\sqrt{210}i}{438} when ± is minus. Subtract 4i\sqrt{210} from 12.
x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Divide 12-4i\sqrt{210} by 438.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73} x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
The equation is now solved.
219x^{2}-12x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
219x^{2}-12x+4-4=-4
Subtract 4 from both sides of the equation.
219x^{2}-12x=-4
Subtracting 4 from itself leaves 0.
\frac{219x^{2}-12x}{219}=-\frac{4}{219}
Divide both sides by 219.
x^{2}+\left(-\frac{12}{219}\right)x=-\frac{4}{219}
Dividing by 219 undoes the multiplication by 219.
x^{2}-\frac{4}{73}x=-\frac{4}{219}
Reduce the fraction \frac{-12}{219} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{73}x+\left(-\frac{2}{73}\right)^{2}=-\frac{4}{219}+\left(-\frac{2}{73}\right)^{2}
Divide -\frac{4}{73}, the coefficient of the x term, by 2 to get -\frac{2}{73}. Then add the square of -\frac{2}{73} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{73}x+\frac{4}{5329}=-\frac{4}{219}+\frac{4}{5329}
Square -\frac{2}{73} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{73}x+\frac{4}{5329}=-\frac{280}{15987}
Add -\frac{4}{219} to \frac{4}{5329} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{73}\right)^{2}=-\frac{280}{15987}
Factor x^{2}-\frac{4}{73}x+\frac{4}{5329}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{73}\right)^{2}}=\sqrt{-\frac{280}{15987}}
Take the square root of both sides of the equation.
x-\frac{2}{73}=\frac{2\sqrt{210}i}{219} x-\frac{2}{73}=-\frac{2\sqrt{210}i}{219}
Simplify.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73} x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Add \frac{2}{73} to both sides of the equation.
x ^ 2 -\frac{4}{73}x +\frac{4}{219} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 219
r + s = \frac{4}{73} rs = \frac{4}{219}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{2}{73} - u s = \frac{2}{73} + u
Two numbers r and s sum up to \frac{4}{73} exactly when the average of the two numbers is \frac{1}{2}*\frac{4}{73} = \frac{2}{73}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{2}{73} - u) (\frac{2}{73} + u) = \frac{4}{219}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{219}
\frac{4}{5329} - u^2 = \frac{4}{219}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{219}-\frac{4}{5329} = \frac{280}{15987}
Simplify the expression by subtracting \frac{4}{5329} on both sides
u^2 = -\frac{280}{15987} u = \pm\sqrt{-\frac{280}{15987}} = \pm \frac{\sqrt{280}}{\sqrt{15987}}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{2}{73} - \frac{\sqrt{280}}{\sqrt{15987}}i = 0.027 - 0.132i s = \frac{2}{73} + \frac{\sqrt{280}}{\sqrt{15987}}i = 0.027 + 0.132i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}