Solve for x
x=\frac{9945}{47306}\approx 0.210227033
Graph
Share
Copied to clipboard
218\times 10^{-18}x=\frac{663\times 10^{-26}\times 3}{434\times 10^{-9}}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
218\times \frac{1}{1000000000000000000}x=\frac{663\times 10^{-26}\times 3}{434\times 10^{-9}}
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
\frac{109}{500000000000000000}x=\frac{663\times 10^{-26}\times 3}{434\times 10^{-9}}
Multiply 218 and \frac{1}{1000000000000000000} to get \frac{109}{500000000000000000}.
\frac{109}{500000000000000000}x=\frac{3\times 663}{434\times 10^{17}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{109}{500000000000000000}x=\frac{1989}{434\times 10^{17}}
Multiply 3 and 663 to get 1989.
\frac{109}{500000000000000000}x=\frac{1989}{434\times 100000000000000000}
Calculate 10 to the power of 17 and get 100000000000000000.
\frac{109}{500000000000000000}x=\frac{1989}{43400000000000000000}
Multiply 434 and 100000000000000000 to get 43400000000000000000.
x=\frac{1989}{43400000000000000000}\times \frac{500000000000000000}{109}
Multiply both sides by \frac{500000000000000000}{109}, the reciprocal of \frac{109}{500000000000000000}.
x=\frac{9945}{47306}
Multiply \frac{1989}{43400000000000000000} and \frac{500000000000000000}{109} to get \frac{9945}{47306}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}