Solve for k
k=8
k=-9
Share
Copied to clipboard
216=3k^{2}+3k
Use the distributive property to multiply 3k by k+1.
3k^{2}+3k=216
Swap sides so that all variable terms are on the left hand side.
3k^{2}+3k-216=0
Subtract 216 from both sides.
k=\frac{-3±\sqrt{3^{2}-4\times 3\left(-216\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 3 for b, and -216 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-3±\sqrt{9-4\times 3\left(-216\right)}}{2\times 3}
Square 3.
k=\frac{-3±\sqrt{9-12\left(-216\right)}}{2\times 3}
Multiply -4 times 3.
k=\frac{-3±\sqrt{9+2592}}{2\times 3}
Multiply -12 times -216.
k=\frac{-3±\sqrt{2601}}{2\times 3}
Add 9 to 2592.
k=\frac{-3±51}{2\times 3}
Take the square root of 2601.
k=\frac{-3±51}{6}
Multiply 2 times 3.
k=\frac{48}{6}
Now solve the equation k=\frac{-3±51}{6} when ± is plus. Add -3 to 51.
k=8
Divide 48 by 6.
k=-\frac{54}{6}
Now solve the equation k=\frac{-3±51}{6} when ± is minus. Subtract 51 from -3.
k=-9
Divide -54 by 6.
k=8 k=-9
The equation is now solved.
216=3k^{2}+3k
Use the distributive property to multiply 3k by k+1.
3k^{2}+3k=216
Swap sides so that all variable terms are on the left hand side.
\frac{3k^{2}+3k}{3}=\frac{216}{3}
Divide both sides by 3.
k^{2}+\frac{3}{3}k=\frac{216}{3}
Dividing by 3 undoes the multiplication by 3.
k^{2}+k=\frac{216}{3}
Divide 3 by 3.
k^{2}+k=72
Divide 216 by 3.
k^{2}+k+\left(\frac{1}{2}\right)^{2}=72+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+k+\frac{1}{4}=72+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
k^{2}+k+\frac{1}{4}=\frac{289}{4}
Add 72 to \frac{1}{4}.
\left(k+\frac{1}{2}\right)^{2}=\frac{289}{4}
Factor k^{2}+k+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{1}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Take the square root of both sides of the equation.
k+\frac{1}{2}=\frac{17}{2} k+\frac{1}{2}=-\frac{17}{2}
Simplify.
k=8 k=-9
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}