Evaluate
\frac{43}{12}\approx 3.583333333
Factor
\frac{43}{2 ^ {2} \cdot 3} = 3\frac{7}{12} = 3.5833333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{600)}\phantom{1}\\600\overline{)2150}\\\end{array}
Use the 1^{st} digit 2 from dividend 2150
\begin{array}{l}\phantom{600)}0\phantom{2}\\600\overline{)2150}\\\end{array}
Since 2 is less than 600, use the next digit 1 from dividend 2150 and add 0 to the quotient
\begin{array}{l}\phantom{600)}0\phantom{3}\\600\overline{)2150}\\\end{array}
Use the 2^{nd} digit 1 from dividend 2150
\begin{array}{l}\phantom{600)}00\phantom{4}\\600\overline{)2150}\\\end{array}
Since 21 is less than 600, use the next digit 5 from dividend 2150 and add 0 to the quotient
\begin{array}{l}\phantom{600)}00\phantom{5}\\600\overline{)2150}\\\end{array}
Use the 3^{rd} digit 5 from dividend 2150
\begin{array}{l}\phantom{600)}000\phantom{6}\\600\overline{)2150}\\\end{array}
Since 215 is less than 600, use the next digit 0 from dividend 2150 and add 0 to the quotient
\begin{array}{l}\phantom{600)}000\phantom{7}\\600\overline{)2150}\\\end{array}
Use the 4^{th} digit 0 from dividend 2150
\begin{array}{l}\phantom{600)}0003\phantom{8}\\600\overline{)2150}\\\phantom{600)}\underline{\phantom{}1800\phantom{}}\\\phantom{600)9}350\\\end{array}
Find closest multiple of 600 to 2150. We see that 3 \times 600 = 1800 is the nearest. Now subtract 1800 from 2150 to get reminder 350. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }350
Since 350 is less than 600, stop the division. The reminder is 350. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}