Solve for B
B=6+\frac{2113}{s_{1}}
s_{1}\neq 0
Solve for s_1
s_{1}=-\frac{2113}{6-B}
B\neq 6
Share
Copied to clipboard
2113=\frac{1}{2}s_{1}\left(2B-12\right)
Combine B and B to get 2B.
2113=s_{1}B-6s_{1}
Use the distributive property to multiply \frac{1}{2}s_{1} by 2B-12.
s_{1}B-6s_{1}=2113
Swap sides so that all variable terms are on the left hand side.
s_{1}B=2113+6s_{1}
Add 6s_{1} to both sides.
s_{1}B=6s_{1}+2113
The equation is in standard form.
\frac{s_{1}B}{s_{1}}=\frac{6s_{1}+2113}{s_{1}}
Divide both sides by s_{1}.
B=\frac{6s_{1}+2113}{s_{1}}
Dividing by s_{1} undoes the multiplication by s_{1}.
B=6+\frac{2113}{s_{1}}
Divide 2113+6s_{1} by s_{1}.
2113=\frac{1}{2}s_{1}\left(2B-12\right)
Combine B and B to get 2B.
2113=s_{1}B-6s_{1}
Use the distributive property to multiply \frac{1}{2}s_{1} by 2B-12.
s_{1}B-6s_{1}=2113
Swap sides so that all variable terms are on the left hand side.
\left(B-6\right)s_{1}=2113
Combine all terms containing s_{1}.
\frac{\left(B-6\right)s_{1}}{B-6}=\frac{2113}{B-6}
Divide both sides by B-6.
s_{1}=\frac{2113}{B-6}
Dividing by B-6 undoes the multiplication by B-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}