Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2100x^{2}-3351x+1340=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3351\right)±\sqrt{\left(-3351\right)^{2}-4\times 2100\times 1340}}{2\times 2100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2100 for a, -3351 for b, and 1340 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3351\right)±\sqrt{11229201-4\times 2100\times 1340}}{2\times 2100}
Square -3351.
x=\frac{-\left(-3351\right)±\sqrt{11229201-8400\times 1340}}{2\times 2100}
Multiply -4 times 2100.
x=\frac{-\left(-3351\right)±\sqrt{11229201-11256000}}{2\times 2100}
Multiply -8400 times 1340.
x=\frac{-\left(-3351\right)±\sqrt{-26799}}{2\times 2100}
Add 11229201 to -11256000.
x=\frac{-\left(-3351\right)±\sqrt{26799}i}{2\times 2100}
Take the square root of -26799.
x=\frac{3351±\sqrt{26799}i}{2\times 2100}
The opposite of -3351 is 3351.
x=\frac{3351±\sqrt{26799}i}{4200}
Multiply 2 times 2100.
x=\frac{3351+\sqrt{26799}i}{4200}
Now solve the equation x=\frac{3351±\sqrt{26799}i}{4200} when ± is plus. Add 3351 to i\sqrt{26799}.
x=\frac{\sqrt{26799}i}{4200}+\frac{1117}{1400}
Divide 3351+i\sqrt{26799} by 4200.
x=\frac{-\sqrt{26799}i+3351}{4200}
Now solve the equation x=\frac{3351±\sqrt{26799}i}{4200} when ± is minus. Subtract i\sqrt{26799} from 3351.
x=-\frac{\sqrt{26799}i}{4200}+\frac{1117}{1400}
Divide 3351-i\sqrt{26799} by 4200.
x=\frac{\sqrt{26799}i}{4200}+\frac{1117}{1400} x=-\frac{\sqrt{26799}i}{4200}+\frac{1117}{1400}
The equation is now solved.
2100x^{2}-3351x+1340=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2100x^{2}-3351x+1340-1340=-1340
Subtract 1340 from both sides of the equation.
2100x^{2}-3351x=-1340
Subtracting 1340 from itself leaves 0.
\frac{2100x^{2}-3351x}{2100}=-\frac{1340}{2100}
Divide both sides by 2100.
x^{2}+\left(-\frac{3351}{2100}\right)x=-\frac{1340}{2100}
Dividing by 2100 undoes the multiplication by 2100.
x^{2}-\frac{1117}{700}x=-\frac{1340}{2100}
Reduce the fraction \frac{-3351}{2100} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1117}{700}x=-\frac{67}{105}
Reduce the fraction \frac{-1340}{2100} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{1117}{700}x+\left(-\frac{1117}{1400}\right)^{2}=-\frac{67}{105}+\left(-\frac{1117}{1400}\right)^{2}
Divide -\frac{1117}{700}, the coefficient of the x term, by 2 to get -\frac{1117}{1400}. Then add the square of -\frac{1117}{1400} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1117}{700}x+\frac{1247689}{1960000}=-\frac{67}{105}+\frac{1247689}{1960000}
Square -\frac{1117}{1400} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1117}{700}x+\frac{1247689}{1960000}=-\frac{8933}{5880000}
Add -\frac{67}{105} to \frac{1247689}{1960000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1117}{1400}\right)^{2}=-\frac{8933}{5880000}
Factor x^{2}-\frac{1117}{700}x+\frac{1247689}{1960000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1117}{1400}\right)^{2}}=\sqrt{-\frac{8933}{5880000}}
Take the square root of both sides of the equation.
x-\frac{1117}{1400}=\frac{\sqrt{26799}i}{4200} x-\frac{1117}{1400}=-\frac{\sqrt{26799}i}{4200}
Simplify.
x=\frac{\sqrt{26799}i}{4200}+\frac{1117}{1400} x=-\frac{\sqrt{26799}i}{4200}+\frac{1117}{1400}
Add \frac{1117}{1400} to both sides of the equation.