Evaluate
\frac{210}{13}\approx 16.153846154
Factor
\frac{2 \cdot 3 \cdot 5 \cdot 7}{13} = 16\frac{2}{13} = 16.153846153846153
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)210}\\\end{array}
Use the 1^{st} digit 2 from dividend 210
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)210}\\\end{array}
Since 2 is less than 13, use the next digit 1 from dividend 210 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)210}\\\end{array}
Use the 2^{nd} digit 1 from dividend 210
\begin{array}{l}\phantom{13)}01\phantom{4}\\13\overline{)210}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}8\\\end{array}
Find closest multiple of 13 to 21. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 21 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{13)}01\phantom{5}\\13\overline{)210}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 210
\begin{array}{l}\phantom{13)}016\phantom{6}\\13\overline{)210}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}80\\\phantom{13)}\underline{\phantom{9}78\phantom{}}\\\phantom{13)99}2\\\end{array}
Find closest multiple of 13 to 80. We see that 6 \times 13 = 78 is the nearest. Now subtract 78 from 80 to get reminder 2. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }2
Since 2 is less than 13, stop the division. The reminder is 2. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}