Solve for x
x=-\frac{2}{7}\approx -0.285714286
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
21x^{2}-29x-10=0
Subtract 10 from both sides.
a+b=-29 ab=21\left(-10\right)=-210
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 21x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -210.
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
Calculate the sum for each pair.
a=-35 b=6
The solution is the pair that gives sum -29.
\left(21x^{2}-35x\right)+\left(6x-10\right)
Rewrite 21x^{2}-29x-10 as \left(21x^{2}-35x\right)+\left(6x-10\right).
7x\left(3x-5\right)+2\left(3x-5\right)
Factor out 7x in the first and 2 in the second group.
\left(3x-5\right)\left(7x+2\right)
Factor out common term 3x-5 by using distributive property.
x=\frac{5}{3} x=-\frac{2}{7}
To find equation solutions, solve 3x-5=0 and 7x+2=0.
21x^{2}-29x=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
21x^{2}-29x-10=10-10
Subtract 10 from both sides of the equation.
21x^{2}-29x-10=0
Subtracting 10 from itself leaves 0.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 21\left(-10\right)}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -29 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 21\left(-10\right)}}{2\times 21}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841-84\left(-10\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-29\right)±\sqrt{841+840}}{2\times 21}
Multiply -84 times -10.
x=\frac{-\left(-29\right)±\sqrt{1681}}{2\times 21}
Add 841 to 840.
x=\frac{-\left(-29\right)±41}{2\times 21}
Take the square root of 1681.
x=\frac{29±41}{2\times 21}
The opposite of -29 is 29.
x=\frac{29±41}{42}
Multiply 2 times 21.
x=\frac{70}{42}
Now solve the equation x=\frac{29±41}{42} when ± is plus. Add 29 to 41.
x=\frac{5}{3}
Reduce the fraction \frac{70}{42} to lowest terms by extracting and canceling out 14.
x=-\frac{12}{42}
Now solve the equation x=\frac{29±41}{42} when ± is minus. Subtract 41 from 29.
x=-\frac{2}{7}
Reduce the fraction \frac{-12}{42} to lowest terms by extracting and canceling out 6.
x=\frac{5}{3} x=-\frac{2}{7}
The equation is now solved.
21x^{2}-29x=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{21x^{2}-29x}{21}=\frac{10}{21}
Divide both sides by 21.
x^{2}-\frac{29}{21}x=\frac{10}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{29}{21}x+\left(-\frac{29}{42}\right)^{2}=\frac{10}{21}+\left(-\frac{29}{42}\right)^{2}
Divide -\frac{29}{21}, the coefficient of the x term, by 2 to get -\frac{29}{42}. Then add the square of -\frac{29}{42} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{21}x+\frac{841}{1764}=\frac{10}{21}+\frac{841}{1764}
Square -\frac{29}{42} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{21}x+\frac{841}{1764}=\frac{1681}{1764}
Add \frac{10}{21} to \frac{841}{1764} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{29}{42}\right)^{2}=\frac{1681}{1764}
Factor x^{2}-\frac{29}{21}x+\frac{841}{1764}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{42}\right)^{2}}=\sqrt{\frac{1681}{1764}}
Take the square root of both sides of the equation.
x-\frac{29}{42}=\frac{41}{42} x-\frac{29}{42}=-\frac{41}{42}
Simplify.
x=\frac{5}{3} x=-\frac{2}{7}
Add \frac{29}{42} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}