Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(3x^{2}+5x\right)
Factor out 7.
x\left(3x+5\right)
Consider 3x^{2}+5x. Factor out x.
7x\left(3x+5\right)
Rewrite the complete factored expression.
21x^{2}+35x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-35±\sqrt{35^{2}}}{2\times 21}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±35}{2\times 21}
Take the square root of 35^{2}.
x=\frac{-35±35}{42}
Multiply 2 times 21.
x=\frac{0}{42}
Now solve the equation x=\frac{-35±35}{42} when ± is plus. Add -35 to 35.
x=0
Divide 0 by 42.
x=-\frac{70}{42}
Now solve the equation x=\frac{-35±35}{42} when ± is minus. Subtract 35 from -35.
x=-\frac{5}{3}
Reduce the fraction \frac{-70}{42} to lowest terms by extracting and canceling out 14.
21x^{2}+35x=21x\left(x-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{3} for x_{2}.
21x^{2}+35x=21x\left(x+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
21x^{2}+35x=21x\times \frac{3x+5}{3}
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
21x^{2}+35x=7x\left(3x+5\right)
Cancel out 3, the greatest common factor in 21 and 3.