Factor
\left(3x-2\right)\left(7x+8\right)
Evaluate
\left(3x-2\right)\left(7x+8\right)
Graph
Share
Copied to clipboard
a+b=10 ab=21\left(-16\right)=-336
Factor the expression by grouping. First, the expression needs to be rewritten as 21x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
-1,336 -2,168 -3,112 -4,84 -6,56 -7,48 -8,42 -12,28 -14,24 -16,21
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -336.
-1+336=335 -2+168=166 -3+112=109 -4+84=80 -6+56=50 -7+48=41 -8+42=34 -12+28=16 -14+24=10 -16+21=5
Calculate the sum for each pair.
a=-14 b=24
The solution is the pair that gives sum 10.
\left(21x^{2}-14x\right)+\left(24x-16\right)
Rewrite 21x^{2}+10x-16 as \left(21x^{2}-14x\right)+\left(24x-16\right).
7x\left(3x-2\right)+8\left(3x-2\right)
Factor out 7x in the first and 8 in the second group.
\left(3x-2\right)\left(7x+8\right)
Factor out common term 3x-2 by using distributive property.
21x^{2}+10x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 21\left(-16\right)}}{2\times 21}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 21\left(-16\right)}}{2\times 21}
Square 10.
x=\frac{-10±\sqrt{100-84\left(-16\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{-10±\sqrt{100+1344}}{2\times 21}
Multiply -84 times -16.
x=\frac{-10±\sqrt{1444}}{2\times 21}
Add 100 to 1344.
x=\frac{-10±38}{2\times 21}
Take the square root of 1444.
x=\frac{-10±38}{42}
Multiply 2 times 21.
x=\frac{28}{42}
Now solve the equation x=\frac{-10±38}{42} when ± is plus. Add -10 to 38.
x=\frac{2}{3}
Reduce the fraction \frac{28}{42} to lowest terms by extracting and canceling out 14.
x=-\frac{48}{42}
Now solve the equation x=\frac{-10±38}{42} when ± is minus. Subtract 38 from -10.
x=-\frac{8}{7}
Reduce the fraction \frac{-48}{42} to lowest terms by extracting and canceling out 6.
21x^{2}+10x-16=21\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{8}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -\frac{8}{7} for x_{2}.
21x^{2}+10x-16=21\left(x-\frac{2}{3}\right)\left(x+\frac{8}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
21x^{2}+10x-16=21\times \frac{3x-2}{3}\left(x+\frac{8}{7}\right)
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
21x^{2}+10x-16=21\times \frac{3x-2}{3}\times \frac{7x+8}{7}
Add \frac{8}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
21x^{2}+10x-16=21\times \frac{\left(3x-2\right)\left(7x+8\right)}{3\times 7}
Multiply \frac{3x-2}{3} times \frac{7x+8}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
21x^{2}+10x-16=21\times \frac{\left(3x-2\right)\left(7x+8\right)}{21}
Multiply 3 times 7.
21x^{2}+10x-16=\left(3x-2\right)\left(7x+8\right)
Cancel out 21, the greatest common factor in 21 and 21.
x ^ 2 +\frac{10}{21}x -\frac{16}{21} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 21
r + s = -\frac{10}{21} rs = -\frac{16}{21}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{21} - u s = -\frac{5}{21} + u
Two numbers r and s sum up to -\frac{10}{21} exactly when the average of the two numbers is \frac{1}{2}*-\frac{10}{21} = -\frac{5}{21}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{21} - u) (-\frac{5}{21} + u) = -\frac{16}{21}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{16}{21}
\frac{25}{441} - u^2 = -\frac{16}{21}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{16}{21}-\frac{25}{441} = -\frac{361}{441}
Simplify the expression by subtracting \frac{25}{441} on both sides
u^2 = \frac{361}{441} u = \pm\sqrt{\frac{361}{441}} = \pm \frac{19}{21}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{21} - \frac{19}{21} = -1.143 s = -\frac{5}{21} + \frac{19}{21} = 0.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}