Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7\left(3c^{2}+2c\right)
Factor out 7.
c\left(3c+2\right)
Consider 3c^{2}+2c. Factor out c.
7c\left(3c+2\right)
Rewrite the complete factored expression.
21c^{2}+14c=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-14±\sqrt{14^{2}}}{2\times 21}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-14±14}{2\times 21}
Take the square root of 14^{2}.
c=\frac{-14±14}{42}
Multiply 2 times 21.
c=\frac{0}{42}
Now solve the equation c=\frac{-14±14}{42} when ± is plus. Add -14 to 14.
c=0
Divide 0 by 42.
c=-\frac{28}{42}
Now solve the equation c=\frac{-14±14}{42} when ± is minus. Subtract 14 from -14.
c=-\frac{2}{3}
Reduce the fraction \frac{-28}{42} to lowest terms by extracting and canceling out 14.
21c^{2}+14c=21c\left(c-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{2}{3} for x_{2}.
21c^{2}+14c=21c\left(c+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
21c^{2}+14c=21c\times \frac{3c+2}{3}
Add \frac{2}{3} to c by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
21c^{2}+14c=7c\left(3c+2\right)
Cancel out 3, the greatest common factor in 21 and 3.