Factor
3a\left(3ab+1\right)
Evaluate
3a\left(3ab+1\right)
Share
Copied to clipboard
factor(\frac{21a^{7}b^{3}}{-7a^{5}b^{2}}-3a^{2}b\left(-2\right)+6a^{2}b-\left(-3a\right))
Multiply a and a to get a^{2}.
factor(\frac{3ba^{2}}{-1}-3a^{2}b\left(-2\right)+6a^{2}b-\left(-3a\right))
Cancel out 7b^{2}a^{5} in both numerator and denominator.
factor(-3ba^{2}-3a^{2}b\left(-2\right)+6a^{2}b-\left(-3a\right))
Anything divided by -1 gives its opposite.
factor(-3ba^{2}+6a^{2}b+6a^{2}b-\left(-3a\right))
Multiply -3 and -2 to get 6.
factor(3ba^{2}+6a^{2}b-\left(-3a\right))
Combine -3ba^{2} and 6a^{2}b to get 3ba^{2}.
factor(9ba^{2}-\left(-3a\right))
Combine 3ba^{2} and 6a^{2}b to get 9ba^{2}.
factor(9ba^{2}+3a)
The opposite of -3a is 3a.
3\left(3ba^{2}+a\right)
Factor out 3.
a\left(3ba+1\right)
Consider 3ba^{2}+a. Factor out a.
3a\left(3ba+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}