Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

21\left(a^{2}+2a\right)
Factor out 21.
a\left(a+2\right)
Consider a^{2}+2a. Factor out a.
21a\left(a+2\right)
Rewrite the complete factored expression.
21a^{2}+42a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-42±\sqrt{42^{2}}}{2\times 21}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-42±42}{2\times 21}
Take the square root of 42^{2}.
a=\frac{-42±42}{42}
Multiply 2 times 21.
a=\frac{0}{42}
Now solve the equation a=\frac{-42±42}{42} when ± is plus. Add -42 to 42.
a=0
Divide 0 by 42.
a=-\frac{84}{42}
Now solve the equation a=\frac{-42±42}{42} when ± is minus. Subtract 42 from -42.
a=-2
Divide -84 by 42.
21a^{2}+42a=21a\left(a-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -2 for x_{2}.
21a^{2}+42a=21a\left(a+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.