Solve for y
y = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
21-\frac{33}{4}y-\frac{5}{2}=\frac{19}{4}
Combine -\frac{63}{4}y and \frac{15}{2}y to get -\frac{33}{4}y.
\frac{42}{2}-\frac{33}{4}y-\frac{5}{2}=\frac{19}{4}
Convert 21 to fraction \frac{42}{2}.
\frac{42-5}{2}-\frac{33}{4}y=\frac{19}{4}
Since \frac{42}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{37}{2}-\frac{33}{4}y=\frac{19}{4}
Subtract 5 from 42 to get 37.
-\frac{33}{4}y=\frac{19}{4}-\frac{37}{2}
Subtract \frac{37}{2} from both sides.
-\frac{33}{4}y=\frac{19}{4}-\frac{74}{4}
Least common multiple of 4 and 2 is 4. Convert \frac{19}{4} and \frac{37}{2} to fractions with denominator 4.
-\frac{33}{4}y=\frac{19-74}{4}
Since \frac{19}{4} and \frac{74}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{33}{4}y=-\frac{55}{4}
Subtract 74 from 19 to get -55.
y=-\frac{55}{4}\left(-\frac{4}{33}\right)
Multiply both sides by -\frac{4}{33}, the reciprocal of -\frac{33}{4}.
y=\frac{-55\left(-4\right)}{4\times 33}
Multiply -\frac{55}{4} times -\frac{4}{33} by multiplying numerator times numerator and denominator times denominator.
y=\frac{220}{132}
Do the multiplications in the fraction \frac{-55\left(-4\right)}{4\times 33}.
y=\frac{5}{3}
Reduce the fraction \frac{220}{132} to lowest terms by extracting and canceling out 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}