Solve for x
x = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
Graph
Share
Copied to clipboard
21-\left(5x-3x-\left(-1\right)\right)=5x-12
To find the opposite of 3x-1, find the opposite of each term.
21-\left(5x-3x+1\right)=5x-12
The opposite of -1 is 1.
21-\left(2x+1\right)=5x-12
Combine 5x and -3x to get 2x.
21-2x-1=5x-12
To find the opposite of 2x+1, find the opposite of each term.
20-2x=5x-12
Subtract 1 from 21 to get 20.
20-2x-5x=-12
Subtract 5x from both sides.
20-7x=-12
Combine -2x and -5x to get -7x.
-7x=-12-20
Subtract 20 from both sides.
-7x=-32
Subtract 20 from -12 to get -32.
x=\frac{-32}{-7}
Divide both sides by -7.
x=\frac{32}{7}
Fraction \frac{-32}{-7} can be simplified to \frac{32}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}