Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-1 ab=21\left(-2\right)=-42
Factor the expression by grouping. First, the expression needs to be rewritten as 21x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-42 2,-21 3,-14 6,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -42.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Calculate the sum for each pair.
a=-7 b=6
The solution is the pair that gives sum -1.
\left(21x^{2}-7x\right)+\left(6x-2\right)
Rewrite 21x^{2}-x-2 as \left(21x^{2}-7x\right)+\left(6x-2\right).
7x\left(3x-1\right)+2\left(3x-1\right)
Factor out 7x in the first and 2 in the second group.
\left(3x-1\right)\left(7x+2\right)
Factor out common term 3x-1 by using distributive property.
21x^{2}-x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 21\left(-2\right)}}{2\times 21}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-84\left(-2\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-1\right)±\sqrt{1+168}}{2\times 21}
Multiply -84 times -2.
x=\frac{-\left(-1\right)±\sqrt{169}}{2\times 21}
Add 1 to 168.
x=\frac{-\left(-1\right)±13}{2\times 21}
Take the square root of 169.
x=\frac{1±13}{2\times 21}
The opposite of -1 is 1.
x=\frac{1±13}{42}
Multiply 2 times 21.
x=\frac{14}{42}
Now solve the equation x=\frac{1±13}{42} when ± is plus. Add 1 to 13.
x=\frac{1}{3}
Reduce the fraction \frac{14}{42} to lowest terms by extracting and canceling out 14.
x=-\frac{12}{42}
Now solve the equation x=\frac{1±13}{42} when ± is minus. Subtract 13 from 1.
x=-\frac{2}{7}
Reduce the fraction \frac{-12}{42} to lowest terms by extracting and canceling out 6.
21x^{2}-x-2=21\left(x-\frac{1}{3}\right)\left(x-\left(-\frac{2}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{3} for x_{1} and -\frac{2}{7} for x_{2}.
21x^{2}-x-2=21\left(x-\frac{1}{3}\right)\left(x+\frac{2}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
21x^{2}-x-2=21\times \frac{3x-1}{3}\left(x+\frac{2}{7}\right)
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
21x^{2}-x-2=21\times \frac{3x-1}{3}\times \frac{7x+2}{7}
Add \frac{2}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
21x^{2}-x-2=21\times \frac{\left(3x-1\right)\left(7x+2\right)}{3\times 7}
Multiply \frac{3x-1}{3} times \frac{7x+2}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
21x^{2}-x-2=21\times \frac{\left(3x-1\right)\left(7x+2\right)}{21}
Multiply 3 times 7.
21x^{2}-x-2=\left(3x-1\right)\left(7x+2\right)
Cancel out 21, the greatest common factor in 21 and 21.