Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

21x^{2}=7
Add 7 to both sides. Anything plus zero gives itself.
x^{2}=\frac{7}{21}
Divide both sides by 21.
x^{2}=\frac{1}{3}
Reduce the fraction \frac{7}{21} to lowest terms by extracting and canceling out 7.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Take the square root of both sides of the equation.
21x^{2}-7=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 21\left(-7\right)}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, 0 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 21\left(-7\right)}}{2\times 21}
Square 0.
x=\frac{0±\sqrt{-84\left(-7\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{0±\sqrt{588}}{2\times 21}
Multiply -84 times -7.
x=\frac{0±14\sqrt{3}}{2\times 21}
Take the square root of 588.
x=\frac{0±14\sqrt{3}}{42}
Multiply 2 times 21.
x=\frac{\sqrt{3}}{3}
Now solve the equation x=\frac{0±14\sqrt{3}}{42} when ± is plus.
x=-\frac{\sqrt{3}}{3}
Now solve the equation x=\frac{0±14\sqrt{3}}{42} when ± is minus.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
The equation is now solved.