Solve for x
x=\frac{3}{7}\approx 0.428571429
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Share
Copied to clipboard
a+b=-58 ab=21\times 21=441
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 21x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
-1,-441 -3,-147 -7,-63 -9,-49 -21,-21
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 441.
-1-441=-442 -3-147=-150 -7-63=-70 -9-49=-58 -21-21=-42
Calculate the sum for each pair.
a=-49 b=-9
The solution is the pair that gives sum -58.
\left(21x^{2}-49x\right)+\left(-9x+21\right)
Rewrite 21x^{2}-58x+21 as \left(21x^{2}-49x\right)+\left(-9x+21\right).
7x\left(3x-7\right)-3\left(3x-7\right)
Factor out 7x in the first and -3 in the second group.
\left(3x-7\right)\left(7x-3\right)
Factor out common term 3x-7 by using distributive property.
x=\frac{7}{3} x=\frac{3}{7}
To find equation solutions, solve 3x-7=0 and 7x-3=0.
21x^{2}-58x+21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-58\right)±\sqrt{\left(-58\right)^{2}-4\times 21\times 21}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -58 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-58\right)±\sqrt{3364-4\times 21\times 21}}{2\times 21}
Square -58.
x=\frac{-\left(-58\right)±\sqrt{3364-84\times 21}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-58\right)±\sqrt{3364-1764}}{2\times 21}
Multiply -84 times 21.
x=\frac{-\left(-58\right)±\sqrt{1600}}{2\times 21}
Add 3364 to -1764.
x=\frac{-\left(-58\right)±40}{2\times 21}
Take the square root of 1600.
x=\frac{58±40}{2\times 21}
The opposite of -58 is 58.
x=\frac{58±40}{42}
Multiply 2 times 21.
x=\frac{98}{42}
Now solve the equation x=\frac{58±40}{42} when ± is plus. Add 58 to 40.
x=\frac{7}{3}
Reduce the fraction \frac{98}{42} to lowest terms by extracting and canceling out 14.
x=\frac{18}{42}
Now solve the equation x=\frac{58±40}{42} when ± is minus. Subtract 40 from 58.
x=\frac{3}{7}
Reduce the fraction \frac{18}{42} to lowest terms by extracting and canceling out 6.
x=\frac{7}{3} x=\frac{3}{7}
The equation is now solved.
21x^{2}-58x+21=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
21x^{2}-58x+21-21=-21
Subtract 21 from both sides of the equation.
21x^{2}-58x=-21
Subtracting 21 from itself leaves 0.
\frac{21x^{2}-58x}{21}=-\frac{21}{21}
Divide both sides by 21.
x^{2}-\frac{58}{21}x=-\frac{21}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{58}{21}x=-1
Divide -21 by 21.
x^{2}-\frac{58}{21}x+\left(-\frac{29}{21}\right)^{2}=-1+\left(-\frac{29}{21}\right)^{2}
Divide -\frac{58}{21}, the coefficient of the x term, by 2 to get -\frac{29}{21}. Then add the square of -\frac{29}{21} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{58}{21}x+\frac{841}{441}=-1+\frac{841}{441}
Square -\frac{29}{21} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{58}{21}x+\frac{841}{441}=\frac{400}{441}
Add -1 to \frac{841}{441}.
\left(x-\frac{29}{21}\right)^{2}=\frac{400}{441}
Factor x^{2}-\frac{58}{21}x+\frac{841}{441}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{21}\right)^{2}}=\sqrt{\frac{400}{441}}
Take the square root of both sides of the equation.
x-\frac{29}{21}=\frac{20}{21} x-\frac{29}{21}=-\frac{20}{21}
Simplify.
x=\frac{7}{3} x=\frac{3}{7}
Add \frac{29}{21} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}